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Abstract

The response of moderately thick laminated panels experiencing large displacements and rotations under non-
uniform thermal loading is investigated through a nonlinear finite element analysis. The present nonlinear
thermoelastic analysis incorporates an anisoparametric, doubly curved, shallow shell element that is free of the
‘locking’ phenomenon. The effects of large displacements and rotations, transverse shear deformations, the coupling
between stretching and bending due to shallow geometry, and Duhamel-Neumann-type thermoelastic material
anisotropy are included in the element formulation. The equations of equilibrium are derived from the virtual work
principle, along with the co-rotational form of the total Lagrangian formulation. A non-uniform temperature field
across the shell surface is approximated by piecewise-uniform temperature distributions over individual elements. In
the thickness direction, the temperature distribution is approximated linearly. Accuracy of the present analysis is
established by comparison with benchmark solutions. The numerical results are presented for various configurations,
including cutouts under uniform and non-uniform temperatures. The numerical results demonstrate that the present
finite element analysis is computationally robust and efficient. © 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

External surfaces of modern aerospace structures are constructed from stiffened composite laminates
because of their attractive mechanical and thermal properties. In aerospace engineering, minimum-
weight design of stiffened panels allows the skin to experience postbuckling behavior before reaching the
ultimate loading conditions, provided that the complete compressive load is carried by stiffeners. Also,
postbuckling of such components may arise from the compressive stresses induced by a sudden
temperature rise on the skin due to aerodynamic heating at supersonic speeds. In this case, the skin
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temperature becomes higher than that of the stiffeners. Because of this temperature difference, the
stiffeners, which are cooler than the panels, will resist the thermal expansion of the panels along the
skin-stiffener interface, thus initiating compressive stresses in the skin and, possibly, causing the skin to
buckle or to experience large transverse deflections (i.e., a softening—stiffening type of behavior). In
order to take advantage of the postbuckling strength of these structural components, it is necessary to
perform an analysis that predicts their nonlinear response under both mechanical and thermal loading
conditions. In addition to this, the aerospace structures include openings, as well as cracks on the skin,
rendering the solution of the problem extremely difficult with existing analytical techniques. Therefore,
an analysis based on the finite element method seems to be the most applicable approach to deal with
such structures (Tripathy and Rao, 1992).

Gossard et al. (1952) seems to have been the first to investigate the nonlinear behavior of thermally
induced structures. By employing the Rayleigh—Ritz and Galerkin methods, they presented solutions for
initially imperfect rectangular plates subjected to tent-like temperature distributions. In their study, they
incorporated the effects of thermally induced stresses and initial imperfections into von Karman’s
classical large-deflection theory. Similarly, Forray and Newman (1962) analyzed the postbuckling
response of isotropic and rectangular plates heated symmetrically about two orthogonal centerlines.
Their formulation provided flexibility in the choice of boundary conditions. Later, using the Rayleigh—
Ritz and Galerkin procedures, Mahayni (1966) extended the formulation to the analysis of shallow
cylindrical shells subjected to axially parabolic temperature distributions.

Also, Basuli (1968) presented an approach for the large-deflection analysis of plates under stationary
temperature distributions based on the concept of total potential energy. In this approach, the energy
contribution due to the second invariant of the resultant strains is neglected in the total potential energy
expression. This approximation, originally introduced by Berger (1955) for the large-deflection analysis
of plates, simplifies the von Karman type of coupled nonlinear partial differential equations to a set of
quasi-linear, decoupled equations. Among the few investigations where a Berger—Basuli type of
approximation was employed, Pal (1969, 1973) analyzed the static and dynamic instability of heated
circular plates subjected to non-uniform temperature distribution both across the surface and through
the thickness. For dynamic analysis, Pal (1973) used Hamilton’s variational principle to derive the
dynamic equilibrium equations of orthotropic plates. In this analysis, it was observed that the
bifurcation buckling behavior gradually disappears as the temperature gradients through the thickness
increase. Biswas (1974, 1976) considered the quasi-static large deflections of circular plates and
equilateral plates under stationary and non-stationary temperature distributions. He provided analytical
solutions for circular and equilateral plates by utilizing the Bessel functions and Fourier series
expansion, respectively. Biswas (1978, 1981) also presented formulations and solution procedures to
analyze the nonlinear behavior of heated orthotropic rectangular plates. He provided a one-term Fourier
series approximation for the transverse deflection (Biswas, 1981) by applying Galerkin’s approach for
the solution of governing equations. This solution method led to a cubic expression relating applied
temperature to central transverse deflection.

Unlike the aforementioned approaches for the nonlinear analysis of panels subjected to heating,
Huang and Tauchert (1988a, 1988b) directly utilized the total potential energy expression in order to
determine the pre- and postbuckling equilibrium configurations of antisymmetric angle-ply laminates
subjected to uniform and nonuniform temperature loadings. The minimization of the total potential
energy expression is accomplished by the method of conjugate directions (Powell, 1964). With this
method, the minimum of a function with respect to several unknown variables is computed without
requiring the derivatives of the function with respect to these variables. In order to ensure that the
conjugate directions method converges to the actual equilibrium configuration, Huang and Tauchert
used an incremental thermal loading procedure.

In order to analyze the thermal postbuckling response of panels with orthotropic material properties,
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Raju and Rao (1989) developed a solution based on the Rayleigh—Ritz procedure with a one-term
double-sinusoidal admissible function. They provided analytical expressions describing the temperature—
displacement path in the postbuckling range. Recently, by using these approximate techniques, Meyers
and Hyer (1990, 1991) and Singh et al. (1993) extended the range of this type of analysis to include the
nonlinear thermoelastic response of anisotropic panels. Meyers and Hyer utilized the first and second
variations of the total potential energy expression to investigate bifurcation and postbuckling responses
of quasi-isotropic panels.

Although a majority of the analytical investigations were focused on the energy and variational
principles and utilized the total potential energy expression for the derivation of the equations of
equilibrium, only a few directly invoked the equations of nonlinear plate theory. In this context,
Stavsky (1963) employed the modified compatibility relation and moment equilibrium equations to
derive the large-deflection equations for a flat rectangular heterogeneous plate under thermal
loading. Librescu and Souza (1991a, 1991b) developed a von Karman type of the large-deflection
theory for plates made of transversely isotropic materials under combined uniform temperature rise
and in-plane edge loads. Their formulation includes the effects of transverse shear deformations.
They focused particular attention on understanding the effects of shear deformations and in-plane
edge boundary conditions on the load-carrying capacity of the panel in pre- and postbuckling
equilibrium stages. Librescu and Souza (1993) and Librescu et al. (1994, 1995) further extended the
nonlinear theory to include the effects of non-uniform temperature distribution on flat and curved
panels under combined loading. Across the thickness, the temperature distribution is assumed to
vary linearly, with the inner surface of the panel being held at room temperature. Birman and
Bert (1993) also considered a combined thermal-mechanical loading. They developed analytic
formulations describing the pre- and post-equilibrium paths of shells under thermal loading. Using
the analytically derived expressions for the temperature versus central displacement, they identified
the snap-through conditions for shells.

Although there has been considerable progress in the analytical predictions of flat and curved
panels subjected to thermo-mechanical loading, the range of applicability of these methods is
limited to simple panel configurations. In fact, they suffer from generality when applied to
structures with complex geometry and boundary conditions. In the context of nonlinear thermo-
mechanical analysis of structures by finite element methods, early attempts were reported by Rao
and Raju (1984), and Raju and Rao (1984a, 1984b). They obtained solutions for the thermal
postbuckling responses of straight (Raju and Rao, 1984a) and tapered (Raju and Rao, 1984b)
beams. Based on the approach introduced by Rao and Raju (1984), Chen and Chen (1989, 1991)
studied the thermal postbuckling response of laminated plates with and without temperature-
dependent material properties.

Madenci and Barut (1994) considered the stability and large deflection of flat and curved
composite panels with cutouts subjected to uniform temperatures. This work was extended by
Noor and Kim (1996), and Noor and Peters (1996) to the case of thermal postbuckling of
laminated panels with cutouts subjected to combined temperature and in-plane compressive and
shear loading.

Although methods for large-deflection and stability analysis of flat and curved panels under uniform
thermal loading are well established, finite element analyses of postbuckling behavior of composite
panels subjected to non-uniform thermal loading are rather few (Noor and Peters, 1997). This study is,
therefore, concerned with the finite element formulation of laminates subjected to non-uniform thermal
loading both through-the-thickness and over the surface of panels. A detailed analysis of the effect of
non-uniform thermal loading on the stability of flat and curved laminates with and without a central
hole is presented.
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2. Element development

Consider the motion of a shallow triangular shell element at initial (¢t = 0), deformed (z=1), and next
deformed (t=1t+ At) configurations as illustrated in Fig. 1. The element dimensions are defined by the
thickness (H), area (4), and height (i(x, y)), of the element mid-plane with respect to the element
reference plane. The non-uniform temperature distribution in the shell element is denoted by T(x, y, z).
Based on the co-rotational form of the total Lagrangian formulation, the initial configuration of the
shell element, which translates and rotates as the shell element deforms, is utilized in order to express
the equilibrium of the shell element.

The formulation begins with the principle of virtual work:

SWe = J0V5°€T Ll 40y, )

Between time ¢ and ¢+ At, g€ represents the incremental Green strain tensor in vector form. The
components of the Piola—Kirchhoff stress tensor are contained in a vector denoted by 6“"5. The lower-

Next (unknown) deformed
configuration at t=t+At

X
,‘A,;'\\
™~
Known (deformed) configuration
at t=t
s
k\z e N\
Initial (undeformed) \ / / e \,\
i = ey s
configuration at t=0 \\ / T y2) / N
H: thickness \ - : :

Fig. 1. Motion of a shallow triangular shell element.
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left subscript indicates the configuration by which the quantity is measured. The upper-left superscripts
refer to the configuration of the body at a specific time. The volume of the element at the initial
configuration is denoted by °¥, and % is the virtual work done by the external forces at time 7+ A

Under the assumption that the material properties are temperature independent and remain constant
throughout deformation, the Duhamel-Neumann stress—strain relation for an orthotropic material is
expressed as

6+Ats — Q( 6+Al€ —a H—ArT) — (t)+At€ _ ch z+ArT, (2)

in which Q represents the anisoparametric material properties and o is the vector containing the

coefficients of thermal expansion. In Eq. (2), the Green strain tensor in vector form is denoted by (’)“”e.
The temperature field at time ¢+ A¢ is represented by ' " 7. Defining {™'c and ™'t as

i — Q e, (3a)

ALy — Qq AT (3b)
and substituting in Eq. (2) yields

(t)+AtS :6+At G — 6+Ar T, 4)
where [™'c and ™'t may be regarded as the Hookean and thermal stress vectors (Nowinski, 1978).

Although they do not represent the stresses arising from mechanical and thermal loadings, respectively,
their superposition results in the actual (Piola—Kirchhoff) stress vector, (’)““s. Since the strain vector,
(’;’A’e and the temperature field, AT can be decomposed between the time increments, the stress
vectors 6+A[G and 6*‘”1: defined by Egs. (3a) and (3b) can also be decomposed in time. Thus, the

Hookean stress vector 5o is decomposed as

t'o={o+o0, Q)

in which o and (o denote the Hookean stress vectors at time ¢ and in incremental form, respectively.

Combining Egs. (4) and (5) gives

At _t t+At
0 8S=¢0+o0—( T (6)

Substitution of Eq. (6) for §™'s in Eq. (1) results in

5”%/6:J 5oeT(60'—6+A’t)dOV+J doe” oo d V. (M
oy

oy
The vector of incremental Green strains in Eq. (7) is defined as
d0€ = dp€L + Jo€EN, ®)

where e and ey represent the linear and nonlinear parts of the incremental Green strains in vector
form, respectively. Also, the incremental Hookean stress vector, oo in Eq. (7), is related to its
counterpart, o€, as

00 = Q 0€. (9)

Substituting from Eqgs. (8) and (9) for the virtual incremental strain and incremental stress
components in Eq. (7) and rearranging the terms leads to
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5W°=J 5oeTQoed°V+J 5oe§6c)'d0V—J Soely Mt d OV
% oy

oy
+J 50e{g)od°V—J Soe! Hrird Oy,
oy oy

The first integral term on the right-hand side of Eq. (10) is nonlinear in terms of incremental
displacement components whereas the remaining terms are either linearly related to or independent from
the incremental displacement components. The nonlinearity of the first integral term, however, may
cause difficulties in the solution of equilibrium equations. In order to relieve such difficulty in the
solution process, the linearization procedure outlined by Bathe (1982) can be employed for the
evaluation of the first integral term, as the true equilibrium configurations will be searched by an
incremental-iterative strategy. Thus, the following approximations are employed:

00€ =2 dper
and

Q o€ = Q p€L. (11)

Incorporating Eq. (11) into the first integral term of Eq. (10) and rearranging the terms yields
J 30/ Q e d OV—i—J Soel bod "V — J doely 1t d Oy
U7 oy oy
(12)

=5W—J 5oeLTf)o'd°V+J Soel Gt d V.
oy oy

As shown in Fig. 2, the element is made of a layered composite laminate. Each layer is assumed to be
homogeneous, elastic, and orthotropic with elastic moduli, £; and E,; shear modulus, G;,; Poisson’s
ratio, vi,; and coefficients of thermal expansion, o; and o,. The subscripts ‘1’ and ‘2’ specify the
longitudinal and transverse directions relative to the fibers in the layer. Also, the position of each ply
with respect to the element mid-plane is denoted by the local coordinate z. Application of these
geometric and layered material properties of the shell element to Eq. (12) yields

Zk

K Zi K Z Zk
Z J J S0e/ QW e dzd "4+ ) J J doek hodzd A — J J doel, it dzd 04
=1 Zk1 k 04 Jz 04 Iz
K 2 K Zk
=6W* — J J Soel lodzd 4 + J J doel At dzd %4,
kZ oy )s LG ]Z y Lo

Zk—1

where K denotes the number of plies forming the laminate. The thickness of the k'™ layer is given by
tx = Zx — Zr_1. Material property matrix Q ~ designates the k™ orthotropic lamina and is referenced to
the (x—y) element coordinate system, as shown in Fig. 2.

2.1. Displacement field

In accordance with Mindlin’s theory (Mindlin, 1951), the incremental displacement components u, v,
and w in the x, y, and Z directions are expressed as

M(X, ya E) = M()(X, y) + EHJ’(XD y)a



A. Barut et al. | International Journal of Solids and Structures 37 (2000) 3681-3713 3687
v(x, y, 2) = wo(x, y) + 20x(x, y)
and
w(x, y, ) = wo(x, ¥). (14)

The functions ug and vy represent the in-plane displacements and w, the out-of-plane displacements on
the mid-surface of the element. The bending (normal) rotations about the x- and y-axes are denoted by
0. and 0,, respectively. The element coordinate system is chosen such that the positive x-axis points in
the direction from node 1 to node 2 of the element. As shown in Fig. 2, the element reference plane
coincides with the (x—y) plane. The components of the incremental displacements and bending rotations

Mid-Surface

T Height, h(x, y)

Referance Plane

El’ EZ’ Gll’ VIZ’ al’ aZ

Fig. 2. Geometry and material layout of the shallow shell element with the positive directions of nodal displacements and ro-
tations.
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at each node of the element, with positive sign conventions, are illustrated in Fig. 2. The variable Zz is
defined as

z=z—h(x,y), (15)

where A(x, y) describes the shallow mid-surface of the shell element.

2.2. Strain field

The linear part of the Green’s strain tensor is based on the definitions given by Reissner (1945) and
Mindlin (1951), combined with the shallow shell theory introduced by Marguerre (1938). The nonlinear
strain vector, ¢€n, is the von Karman (1910) approximation of its complete form (i.e., the nonlinear
terms due to the gradients of in-plane mid-surface displacements are also included). Therefore, the linear
and nonlinear parts of the incremental Green’s strain tensor for the shallow shell component are defined
as

upx — 'hy0,
Vo,y — [h,yg_\—
0€L = § U0,y + Vox —'h, 0, —! h,ygy +z
wo,x + 9},
W,y + 0y

(16a)

co2
4
+
=
S
=

and

2 2 2
uO,x + vO,x + WO.x

1| ug, + 5, + w5,
0EN = 5\ 2(ug o,y + Voxvo,y + WoxWo,y)
0
0

(16b)

Substituting Egs. (16a) and (16b) for the incremental strain components and performing integration
along the thickness direction in Eq. (13) leads to
J doe/ Coer. d 4 + J Soef 46d 04 — J Soel H'2d %4
04 0

A 04

(17)
=0 — J Soel §6d %4 + J Soel 5412 d 4,
0

04 A

in which C is the constitutive matrix composed of the extensional, A, membrane-bending coupling, B,
bending, D and transverse shear, G, stiffness matrices (Yang et al., 1966),

A B 0
c=|B D o0 | (18)
0 0 G

with
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Ngle

A=

k), - -
0V — Z1)
1

=~
Il

ZQU() P Zi)
k=1

ij=123
Lm=12" (19)
DWICEED
k=
K

G = Z 3 ,71+3(Zk — Zk—1)

The vectors {6 and ’+A’ T contain, respectively, the following stress resultants:

taT ) taT (AT AT
09 = 100500k 00-}' } (208.)
and

t+AtaT | t+Ata2T t+4t2T t+AtaT

o U = {O Teoo Teoo T }’ (20b)

where the subscripts ¢, k and y denote the Hookean and thermal stress resultants associated with the in-
plane, bending and transverse shear deformations, respectively. These stress resultant vectors are
established by integrating the Hookean (o) and the thermal stress ( H'At‘[) vectors across the thickness
of the panel as given by

6 Noxx 6+A 'N Txx K % 6 Oxx (t) +At Toy

(18, 5-113,) = INoyy £, 4 BN, = Z J Loy e bRl &, (212)
([)N(rxy 6+ArN.Exy k=1 Y Zk-1 ([)O-xy 6+Ar,cxy
6 M gix (t)+Af M., K 2 10 6+At "

(88 %) = OMoyy 00 0 Moy, - Z J : 0% (] o0 T dz (21b)
6 Mgy POy =1 Jz o A

and

t t4At Kz t (At
A Ata Q Xz Xz 0, Ty
(067, 67"'%,) = <{ 9QaY }, { 9+Ath }) = E J ({ g }, { ([)+AI }) dz. (21c)
0oyz 0 Q Tz 1 Jz 00yz 0 yz

The vectors ger, and geyn, containing, respectively, the linear and nonlinear parts of the Green strain
components measured at the mid-surface, are defined as

T T T T
o€, = { 0€., 0€,1> OeyL}, (22)

with
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t
Uy x — h’x(qy
t
0€L = Vo,y — h,ygx > (233')
t t
U,y + vox — h,xex — h,y(?y

0,
0€xL = Hx,y 5 (23b)
Ocx 40,
_ Jwox+ Gy
and
oen = { oey, 07, 07}, (24)
with

2 2 2
1 uO,x + VO,X + WO,x
06N = 3] o, + iy + G, ' 25)

2(ug,xuo.y + vo.xVo,y + WoxWo.y)

Utilizing the C-anisoparametric interpolation functions derived by Tessler (1990), the incremental in-
plane, transverse, and out-of-plane rotational components on the mid-surface of the element are
approximated as

3 9 4
Ug - uok Uy Uoe
:E Nk +§ Nk OA}JNVC{ }
{vo } /{mk } — k{ ¥ Voe

k=1 Yok

3 6

+

wo = Z M iwor + Z MWy
k=1 k=4

and
0, 3 0.4
Lot =xafo ) @

The in-plane displacement components, u, and v,, are approximated by cubic interpolation functions,
N and A".. The nodal values at the vertices are represented by uy, and vo,. The remaining nodal
values are associated with the nodes along the edges, ua'k and va'k, and at the element centroid, uy,. and
vo.. The transverse displacement field, wy, is approximated by quadratic interpolation functions, .#y,
with wo, and wj, representing the nodal values at the vertices and the middle of the edges, respectively.
The out-of-plane rotational components, 0, and 0,, are approximated by linear interpolation functions,
{k, with 0y and 0, representing nodal values at the vertices. The explicit forms of these interpolation
functions are given in Appendix A.

In matrix form, Eq. (26) can be rewritten as
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T+
u) =N,v+ Nv+ N.v, (27a)
and
90 = NgV, (27b)
where
I'= del =1{0,.0,,0
u() - {u07 Y0, M;O} an 0o — { Xs Vy» }5
T
v' = {uo1, vor, wot, Ox1, O0y1, 01, . . ., Uo3, Vo3, wo3, 03, 0,3, 023},
+7 + + + ot ot gt
vV = {u04, s Uggs Voas -+ -5 Vogr Woas Wos» w%}
and

T
V., = {uoc, Vol

The shape-function matrices N, and N} are dependent on 4" and .#, with k = 1,..., 9 and k = 1,...,
6, respectively. The matrix N, contains only .4".. The matrix Ny is composed of the area coordinates &,
with &k = 1, 2, 3. Although it is artificial, the rotational variable normal to the reference plane, 0., is
included in the formulation because transformation to global coordinates leads to non-zero rotations
about all axes. The explicit expressions for the shape-function matrices are given in Appendix A.

The in-plane and transverse displacement components at the edge nodes are eliminated prior to the
construction of the stiffness matrix by imposing the edge constraints on the linear part of the shear
membrane strains. These constraints, introduced by Tessler (1990), are given in the form

(k)
| a
Y [&wo(s) + 0,7(s)] =0

and

0 0
[ Ys - On_ s
9p 3Su (s) 8Sh(n S)

—_— = 2
ds” 0 @8)

0 b 0
%v,,(s) - Gn%h(n, s) — 9‘v£h(’7, s)

with k = 1, 2, 3 and p = 1, 2. The subscripts r and n denote the directions tangent and normal to the
edge of the element. The k' edge is specified by a superscript k. The displacement components tangent
and normal to the k™ edge of the element are denoted by u(s) and w(s), respectively. These
displacements and rotations are related to their counterparts, defined with respect to the element
coordinates, through appropriate transformations.

Imposing the constraints given by Eq. (28) along the edge of the element leads to the following
transformation between intra-edge displacements and corner displacements:

% =Lgvwith f=u, v, w (29)

or
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=Lyv, (30)

and
K Sy
vi=|vivivl, (31)
with
r
N
Vu = {“04a > ”09}’
r
_ [ +
vi = {0}
and
+

T _ [t ot ot
Vi = {Wia Wos, w3 }-
The explicit forms of the transformation matrices Lg (B=u, v, w) are the same as those given by

Tessler (1990). These matrices are presented in Appendix A for completeness.
After substitution from Eq. (30) into Egs. (27a) and (27b) can be expressed in compact form as

u | _ N, N.[v
{90}_[N0 0 “V(} (32)

in which N, = N,, + NfL. Based on this form, the linear part of the strain vector, ger, given by Eq. (16a)
can be cast into

oer = [B,, Be]{ o } (33)
0

where B, and By constitute the strain—displacement transformation matrices. The explicit forms of B,
and By are given in Appendix A. Considering gep in Eq. (33), the first integral in Eq. (17) can be
expressed in the form

ov k k v
S TC d OA — L11 L12 34
J 04 OeL o€L { 5vc } |:k{12 kL22 v, s ( )

in which

ki = J (NMT B’CB,N, + N/B7CB;N, + N/B/CB,N, + N/B/ CBgNg)dOA,
04
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K1 = J (R/BICB,N. + NJB]CB,N, ) d'4
04

and

Ki» = J N’BI'CB,N. d’4.
04

In matrix form, the nonlinear part of the strain vector, gey, given by Eq. (16b) becomes

1
ey = E{sTDT, 07, 07},

in which

& = {Uo,x, Vox» Wox> U0,y V0,ps W0y}

and

Upx Vo,x Wo,x 0
D=0 0 0 uo,y
Uy Voy Woy Uox

with the properties of

0De = Die
and

ET( 06, 6+AI%E) _ (660 6+Ang)£)
where

1S — ([)Naxxl (’)NM},I
and

t+At t+At
I+Atz _ |: 0 N‘zxxl 0 eryI
0 e = | i+dat i+At

SN L AN, T

£ = Buy,

0
VO’_‘;
Vo,x

with the matrix differential operator

d d
BT = [1—, 1— |.
|: ax’ 8yi|

]

with I being a 3 x 3 identity matrix. The vector E can be expressed in the form

0
wo,y
wo,x

>

3693

35)

(36a)

(36b)

(37)

(38a)

(38b)

(39)

(40)

Using this representation of gen and substituting for uy, from Eq. (32), the second and the third
integral terms in Eq. (17) can be rewritten as
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T
ov k k v
S T[AdOA: all al2 )
JOA 08N 00— { 5VL. } |:k312 kgzz \

in which

key = | N!'87!SBN, d,
J 04

kep=| N B7!S BN, d,
04

Ko = N8’ | BN, d’%4
J 04

and
T i+dip 40 v |kt ka2 fv
JOAaoeNO 'c(dA:{éw} [kzz km“w
in which

k.1 = JU N/ BT t+41x 8N, d'4,
A

ko> — JO R/®T 6413, BN, d4
A
and

koo = J N7®" (+4i3 BN, d"4.
04

|

(41a)

(41b)

Similarly, by using the incremental linear strain—displacement relations from Eq. (33) and the finite
element displacement approximations given by Eq. (32), the fourth and the fifth integral terms in Eq.

(17) can be expressed in the following form:

Tia 0 _ )OOV (¢,
JOA 5()eL O(SdA—{(SVE f(;c s

in which

f, = J (N:BuT—i—NQTB@T) 16 d,
04

f,. =J N'B7 {6 d°4
04

and

(42)

(43a)

(43b)
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sv [t
JOA Soel 412 404 = { 5; } {f } (44)
in which
£, = JOA (R/BT +NIB) 5 a4 (45a)
and
f.. = JOA NTBT (1'% d°4 (45b)

2.3. Computation of internal forces

In order to complete the finite element formulation of the geometric stiffness matrices, k,; and k.,
and internal force vectors, (f,, f,.) and (f, f..), the resultant stress vectors 66 and 6“”% must be
determined a priori. The resultant stress vector ;o can be determined incrementally based on the stress

decomposition expressed as

06 =6“” 6+96", (46)
where (6™ represents the incremental resultant stress vector (Hookean) in the preceding time step. The
vector (6™ is related to the incremental resultant strain vector, ge*, in the preceding time step, by the
constitutive relation

06* =C ()e*. (47)

The incremental resultant strain vector, ¢e*, is composed of its linear and nonlinear components in the
form

0e* =o€} + oexs (48)

in which (ef and (e} are defined by Eqgs. (33) and (35), respectively. Also, the incremental
displacements, u§, and the incremental rotations, 0, are evaluated in the preceding time step.

Using the interpolation functions for the displacements and rotations given in Eq. (32) and utilizing
the matrix form of strain—displacement relations given in Eq. (33), the linear part of the incremental
resultant strain vector, oe], is written as

oef = [B, Bg][gg ONH:} (49)

The nonlinear incremental resultant strain vector, (e}, contains the terms associated with the in-plane
deformations, i.e.,

oerl =1{oerd, 07,07}, (50)

where the vector ¢efy (=1 /2e*T%*T) is defined in Eq. (35) in sub-matrix form. Similar to the linear
incremental strain component, the finite element representation of the vector e}y is achieved by
combining Egs. (32) and (50) as
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1 T _ *
o€ = E[U*T D:T][giﬂ%T%[N” NC]{ Z* } (51)

c

where the matrices v*, v¥, R, R., and B are defined as

vi 0 0
v =0 v* 0 [,
[0 0 v
[vi 0 0 ]
=0 vi 0 [,
0 0 v
[N, 0 0
N.=10 N, q ,
L0 0 N,
[N, 0 0
N=|0 N 0
[0 0 N,
and
I% 0 18i
8= ay
0 I— I—
dy  0x

The matrix differential operator, B, is given in Eq. (40).

Known incremental nodal displacement vectors, v* and v?, from the preceding time step permit the
computation of the linear and nonlinear incremental resultant strain vectors, oef and ey, from Eqgs.
(49) and (51), respectively. Although the incremental nodal displacement vectors are determined from
the equations of equilibrium, the direct utilization of these vectors to Egs. (49) and (51) may cause
difficulties and even deterioration of computed results from their actual values. This is mainly due to the
incremental rotations, which can easily violate vector operations when they become large in magnitude.
An in-depth discussion on finite rotations and a single pseudo vector representation of a set of
consecutive rotations can be found in the paper by Argyris (1982). Therefore, the components of v* and
v: must be treated in a different way in order to compute the strains and stresses accurately. In the
nonlinear finite element analysis of plates and shells, a common approach to handling large rotations
and to simplifying the computation of internal forces is to employ a co-rotational (moving or convected)
coordinate system. Argyris et al. (1964) and Wempner (1969) are among the early investigators who
applied the convected co-ordinate system to the solution of nonlinear static problems; Belytschko and
Hsieh (1973) also successfully employed the same approach to the solution of nonlinear dynamic
problems.

In the co-rotational formulation, a moving Cartesian co-ordinate system containing the initial
configuration of an element is rigidly tied to the element. The configuration of the element described in
this coordinate system may be called the ghost configuration. As the actual element deforms, the ghost
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configuration follows the element as a rigid-body. Thus, the distance between the deformed element and
the undeformed rigid ghost element is a measure of the actual deformations. The incremental strains
given in Egs. (49) and (51) can then be computed, once the deformational part of the element
displacements is extracted from the total displacements of the element, because the rigid-body part of
the displacements do not create strains and stresses. In this analysis, the deformational parts of the
incremental displacements and rotations, represented by (v}, vj.), are extracted from the total
incremental displacements and rotations, (v*, v¥), by utilizing the methods proposed by Bathe and Ho
(1981) for the deformational displacements and by Rankin and Brogan (1986) for the deformational
rotations. In the computation of the incremental strains Eq. (48) and incremental stresses Eq. (47), the
vectors (v}, v5.) are used in place of the incremental nodal vectors (v*, v}). Therefore, with the resultant
stresses known from Eq. (47), the generation of the geometric stiffness matrix k,; and the internal force
vector (f;, f,.) is completed.

Unlike the incremental resultant stress vector (¢*, computation of the resultant thermal stress vector
is straightforward because a direct relation between the thermal stresses and the applied temperature can
be established, regardless of the magnitude of the displacements or deformations. In this analysis, the
temperature distribution over the surface and across the thickness of the element is assumed to be
linear:

1 22\ 1 27
T )= =T (1 —) —T7) <1 — —) 2
.y, D) = 3T\ T+ 5 |+ 3T, ) ) (52)
with
{T<+>(x, ») } _¢ Ty Lo r5” Lol X (53)
T-( =<l B 2 B 3 (-
(x,») T(l ) T(2 ) T(3 )

In Eq. (53), the temperature distributions over the upper and lower faces of the element are
represented by the temperature field functions 7¢*(x, y) and T(x, y), respectively. These functions
are also approximated linearly in terms of temperatures at the nodal points by using the area
coordinates {;, {, and {3, which are given in Appendix A.

Based on the assumption that the material properties are independent of the temperature change, the
relation between the thermal stress vector, 6“"1, and the applied temperature, ‘" 4T as defined by Eq.

(52), can be written as

1 2z 2z
i+diz _ Z )k o (k) I+AtT(+) 1 T(*) <1 _ _>] 4
0 T ZQ o [ (Xa y)( + H>+ (X, y) H > (5 )

in which the vector a* contains the thermal expansion coefficients of the k™ layer defined with respect

to the element coordinate system in the form
a7 = [a;’;?, ) 0]. (55)
The material property matrix for the k'™ lamina is also used in Eq. (18) for the construction of

material properties relating the components of the incremental resultant stress vector (6 to those of the
incremental resultant strain vector, ge.

Substituting from Eq. (54) for the terms involving 6“"1: in Eq. (13) and carrying out the integration
along the vertical direction, Zz, gives the relation between the resultant thermal stress vector, 6“"1?, and

the applied temperature, **“’T. The resulting expressions for S+41% can then be written as
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FAta ) At (+ +4
RE: = A A 4 AC) tHdip () (56)

where A" and A are, respectively,

S S (57)
with
1 & [ 1
K|z _ 2 2 =
AP =13 - + -] (559
R M1 2
+ k) o (k =2 =2 =3 =3
A; =5 ; QWa )_E(Zk Zj— 1) + 37{(21« - Zk—l)] (58b)
and
AT — {A( T AT OT} (59)
with
R ) L2 o
AP = 3 ;Q a®| (G — zy) — E(zk -2_)) (60a)
and
K 2
k) oy (k 22 33
=3 /Z:: () ()|: = Zk— l) 3H(Zl3c Zh— 1)] (60b)

Finally, for a specified temperature distribution, ‘*4/T in the form of Egs. (52) and (53), substituting
from Eq. (56) for the resultant thermal stress vector, 6“" 7, in Eq. (37) and following through Egs. (41a)
and (41b) complete the formulation of the geometric stiffness matrix arising from thermal loading.

In the derivation of the thermal loading vector, (f;, f,.), the thermal stress vectors, 6+A’f(+) and
4180 “are defined in the form
6+Azze(+) = AP i () (61a)
and
BRARO) _ ) A (), (61b)
Using these relations, the resultant thermal stress vector, 6*"’1: can be decomposed as
6+At;e _ 6+At,t_(+) + 6+At"l:'(_). (62)

Similarly, using Eq. (62), the thermal loading vector, (f;, f..), can be decomposed as

e {e ] «
e " e | e
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with
= | (R/BT+NIBI)A™ 47 g0, (64a)
04
£ =| NIBIA® H+4p) g0y, (64b)
04
) = (NZBMT +N0TB0T)A<*> AT 404 (64c)
04
and
£ = NIBIAD +47) g0y, (64d)
04

2.4. External virtual work

The virtual work due to external nodal and traction forces in the k'™ element is expressed as

ov f
e _ e
o = { ov. } + { £, } (65)
in which
f, = flodh 4 J N’ d %4 (66a)
04
and
£, = foodal 4 J N’ d’4, (66b)
04
with
2T =10,0,2.}. (67)

In this analysis, only the externally applied pressure, £, is considered in the traction vector, Z.

3. Incremental equilibrium equations

Substituting Eqgs. (65), (34), (41a), (41b), (2) and (44) in the form of Eq. (63) into the statement of
virtual work Eq. (17) and requiring the virtual displacements to be arbitrary result in

kri Kri |fv f, £, £ £
- - ’ 68
|:k;12 k72 :| { Ve } { fee } { foc } + { fij) + fiz) (68)

in which kz; form the tangential stiffness matrix defined by
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kry = kpj + Koy — ke (i, = 1, 2). (69)

4. Numerical results

The accuracy of this element is validated by modeling a previously considered cylindrically curved
laminate subjected to a uniform temperature distribution as shown in Fig. 3(a). The geometric
dimensions and the material properties are the same as those used by Huang and Tauchert (1991). The
planform dimensions, L and W, are both equal to 160 cm. The panel thickness, H, and the radius of
curvature, R, are equal to 0.8 cm and 800 cm, respectively. Each lamina forming the panel has the
material properties E; =138 GPa, E,=8.28 Gpa, G,=6.9 GPa, v{»=0.33, o =0.18 x 10_6/°’C and
=27 x 107%/°C. Due to the presence of symmetry, only a quarter of the panel is modeled, with
boundary conditions specified as

Along symmetry line (x=W/2): u=w_=0
Along symmetry line (y=L/2): v=w =0
Along the edges (x=W, y=L): u=v=w = (.

A comparison of the results describing the relationship between temperature and deflection at two
different locations for a specially orthotropic, thick, curved panel is given in Fig. 3(b). As can be seen,
the comparison reflects close agreement between these two analyses.

The capability of the present shell element under non-uniform temperature distributions is
demonstrated by considering a simply supported flat laminate with/without a hole subjected to a non-
uniform through-the-thickness temperature distribution, as shown in Fig. 4. In this figure, the plate has
square planform dimensions, with L=W = 0.254 m. The simply supported boundary conditions along
the horizontal and vertical edges are given as

Along the horizontal edges (y= £ L/2): u=v=w=0,=0
Along the vertical edges (x= + W/2): w=0,=0.

The panel is made up of a quasi-isotropic laminate, with stacking sequence given as [+45°/—45°/0°/
90°],s, where the fiber orientation of each layer is denoted by 6 and measured with respect to the y-axis,
as shown in Fig. 4. The material properties of each layer are specified as E;=130.3 Gpa, E,=9.377 Gpa,
G1,=4.502 Gpa, v;,=0.33, 2;=0.139 x 107%/°C and 2,=9 x 107%/°C. Also, each layer has an equal
thickness of #,=0.127 mm.

The temperature distributions on the upper and lower faces of the panel are considered to be uniform
and are denoted as 7, and Ty, respectively. Assuming a linear temperature variation through the
thickness of the panel, the temperature distribution at any point in the panel can be given by

- 1 2z 1 2z
T(x,y,z):i 1+ﬁ Tu+§ l—ﬁ Tb,

where H is the half thickness (7, x 8) of the panel.
In order to investigate the panel response for varying values of T, and T, the following parameter
substitutions are used:

T T.+ Ty
= — d}v =
B 7, and o >

where f§ is a constant parameter. Note that
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/ L=W=1.6 m
sy R E,=138x10°Pa

< E,=8.28x10°Pa
I ——— SR ¢ ST X4 [V )

v,,;=0.33
,=0.18x10°/°C
’ a,=27x10°/°C
Lay-up:[0°]
t,=0.008m

120
w(W/2,L/2) \4
0N =
100 g
B o
D% 5 O/
e T
80- "
Doy
© I
" !
|
g 60~
Q.
: 9
=
40~
Present analysis ]'
20~ g |
07 G, > Huang and Tauchert (1991) |
‘l
I
' |
T T T
-2.0 -1.5 -1.0 -0.5 0.0 0.5
Deflection, w/h
(®)

Fig. 3. Cylindrical laminate subjected to uniform thermal loading: (a) geometry and material properties and (b) comparison of

results.
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T,

— =0=T,=0and T}, #0,

Ty

T,

—:oo:>Tu¢0and TbZO

Ty

and

T, . .

T = 1= T, = Ty, (uniform temperature increase).
b

The effect of non-uniform through-the-thickness temperature variation is investigated by considering
the panel (a) without a cutout and (b) with a concentric circular cutout with radius » = 0.3W. Fig. 5
shows applied temperature at the mid-surface, 4o, versus the out-of-plane deflections measured (a) at the
center of the panel without a hole and (b) at (x = 0, y=r) of the panel with a hole. As can be seen,
both cases (a) and (b) yield the same trend in their load—deflection paths. As f approaches 1, the panel
response in both cases is close to bifuraction behavior (at f=f. =1, there is bifurcation in both cases).
Near f=0 and =00, the softening/stiffening type of large-deflection behavior is taken over by the
stiffening behavior, as expected. In the case of the panel with a hole, the critical buckling temperature
increases slightly.

In the next demonstration problem, a cylindrically curved, angle-ply laminate subjected to non-
uniform thermal loading is considered. The geometric dimensions and the material properties of the
panel are shown in Fig. 6. The simply supported boundary conditions are as follows:

Along the horizontal edges (y = 0 and L): v=w=0,=0
Along the vertical edges (x = 0 and w): w=60,=0.

Also, the horizontal movement of the panel at x=w/2 and y = 0 is suppressed in order to prevent
rigid-body translation of the panel in the horizontal direciton. The temperature distributions on the

u=v=w=0=0 = Txy)=T,

L=W=0.254 m
E,=1.303x10" Pa
E,=9.377x10°Pa
G,,=4.502x10°Pa
v,,=0.33
a,=0.139x10°/°C
a,=9.0x10°/°C
e : Lay-up:[+45%-45°/0°/90],,
W . t=1.27x10"m

W |

Fig. 4. Flat laminate with/without a hole under non-uniform through-the-thickness temperature distribution.
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upper and lower faces of the panel are considered to be in the form of one-term double-sinosoidal
functions with magnitudes 7, and T}, respectively. Hence, at any point, the through-the-thickness
temperature distribution is obtained from

- 1 2z 1 2z
T(X, Vs Z) = 5(1 - ﬁ)TH(Xa y)+ 5(1 + ﬁ)Tb(xa J’)

The panel’s nonlinear response under non-uniform temperature distributions is investigated by
employing the same parameters,  and /4_0, as defined in the preceding example. Furthermore, the effect
of curvature is studied by considering the panel with radii of curvatures (a) R = 20 and (b) R = 5W,
where W is the projected width of the panel on the (X—Y) plane. For different values of f ranging from
0 to oo, the plots for applied temperature, /g, versus the out-of-plane displacement measured at the
center (x=W/z, y=L/z) of the panel for both cases are illustrated in Fig. 7. It can be clearly seen by
comparing Fig. 7(a and b) that the curvature of the panel significantly influences the panel’s response. In
addition, the responses before and after f.. (f at which bifurcation occurs) are unsymmetric in
comparison to the symmetric response of the flat plate observed in the preceding example. In Fig. 7(a),
P for the shallow panel (R = 20W) is between 0.675 and 0.68. The response beyond f, yields upward
displacement, and the panel possesses a behavior stiffer than the panel at f < f,.

L=W=1.6 m
E,=138x10’Pa
E,=8.28x10’Pa
G,,=6.9x10’Pa
v,,=0.33
a,=0.18x10°/°C
a,=27x10°/°C
Lay-up:[-45°/45°/-45°/45"]
t=0.002m

Fig. 6. Cylindrical laminate subjected to non-uniform temperature distribution.
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~ [8) B=0.6
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g B=1. 2
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L B=2. =
3 2
= g
5 001 5 600- o
& g B=1
=] B=0 )
S ‘ i} =
! pre 400- -
50
200+
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-0.01 -0.005 0 0.005 0.01 -0.04 -0.03 -0.02 -0.01 0 0.01 0.02 oO.
Center displacement, w(m) Center displacement, w,,(m)
(@ ®)

Fig. 7. Effect of curvature and non-uniform through-the-thickness temperature distribution on the response of the cylindrical panel
with (a) R = 20W and (b) R = 5W.

In the case of the panel with smaller radius of curvature (R = 5W), the bifurcation point, S, is
observed between f=0.5 and f=0.6. The panel exhibits snap-through and snap-back type postbuckling
behavior between =0 and [=0.5. Between f=0.5 and =0.6, the panel goes through either a
postbuckling behavior or a large-deflection behavior. The response beyond f.. is purely of the large-
deflection type.

5. Conclusions

In this analysis, the effects of non-uniform temperature variation across the shell surface and through
the thickness of flat and curved laminates have been investigated by a nonlinecar FE analysis. Defining a
constant parameter, f3, as the ratio between the thermal loads on the upper and lower faces of the panel,
a series of FE analyses with the present shell element were performed to predict and understand the
behavior of the panels for various values of f8, along with different hole sizes and radii of curvatures of
curved panels.

For flat panels, the non-uniform temperature variation resulted in a stiffening/ softening type of large-
deflection response. The responses between =0 and f=1 and between f=1 and =00 were the same
in magnitude, but opposite in direction (the bifurcation was at = f..=1). The hole size had little effect
on the responses and no effect on the deflection patterns.

For curved panels, the non-uniform temperature variation resulted in large-deflection, snap-through,
and snap-back phenomena. It was observed that, as the curvature of the panel increased, f3., decreased
and the postbuckling response between =0 and =/ changed significantly.

03
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Appendix A

In Eq. (26), the interpolation functions A", .#k and &, for the triangular element given in Fig. 8 are
expressed as

Wi= 3UGL - DL -2 =123,
9
Ka= 20564 - 1),

W= 2006GL - 1),

3
6 5
1 4 2
(b)
3
1 2
©

Fig. 8. Anisoparametric nodal configurations of (a) in-plane displacements, u, and v, (b) transverse displacement, wy, and (c) out-
of-plane rotations, 0, and 0,.
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W= 0030~ 1),

Wy = 20565 - 1),

.9,
Ng = 54’123(3(3 - D,

9
W= 50560 = D,

JV(? = 27C1€2C3:

%i :Cl(2Cl_ 1) i= 1a 29 3a

My =400,
Ms = 40505
and
Mo = 4050, (A1)

where the area parametric coordinates, {;, are defined by
= ol + b+ a)
i — 2A Cj iX a;y s

in which

a3b2 — b3Cl2

ai =X —Xj; b =y — yi; ¢ = Xy — yjXi; and A = 5 ,

with x; and y; representing the coordinates of the i'" node of the element. In Eqs. (27a) and (27b), N,,,

N}, N, and Nj are constructed as
N1 0 0 00 0 A5 0 0 00 0 A5 0 0 0 0 0
N,=1|0 A0 00 0 O N 0 00 0 O N300 0 0 0], (A2a)
0 0 Ay 0 0 0 0 0 My 0 0 0 0 0 My 0 0 0
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000¢G 0 000O0OC¢G O 0O0O00O0Y¢G 0 o0
No=]0 0 0 0 ¢ 0 0 0 0 O0 & 00000 &G O
0000 O OOOOOTOOOOOOO O

The matrices L, L,, and L,, in Eq. (29) are expressed in the form

_goozﬁ’zg’o%ooyﬁ?yﬁ)oo000
% 00 2y 29 % 00 29 2§ 00 000
CJoooo 0 000 L Ao zo0 gy
B R R R R R I 2 O R N
%oogﬁ?sﬂﬁ? 0000 0 %0 7@
_% 00 2% 29 00 000 0 % 00 2
K % 0 25 25 0 0 % 0 2% 25 000 00
0 % 0o« Y 0 % 0o #3) %) 00 0
. 00 00 0 0 % o £ £V 0 % 7\
oo o0 o 0 % 0o £ Y 0 % K%
0 % 0o £ %) 00 00 0 0 % k7S
0 % 0o 2% 2¢) 00 00 0 0 % 7%

and

(1
L
M
L
2
Ly

@
332

bl

>

(A2¢)

(A2d)

(A3a)

(A3b)
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1 bs

00 5 =
Ln: 0 0 O 0
1 by

003 -3

with 2% defined as':

and

L1 = p1 — cos Y sinyqi,
L1y = sin’ Yqi,
P13 = pr — cos Y sin Yqs,
P14 = sin’ Y,
P31 = cos” Yqi.
Ly = p1 — cos Y sin Yqi,
P23 = cos® Yqa,
Py = py — cos Y sin Yqs,
F31 = p3 — cos Y sin Yqs,
Ly = sin’ Ygs,
£33 = ps — cos | sin gy,
L34 = sin’ Yqu,
Ly = cos® Y,
Ly = p3 —cos Y sin Yqs,

Ly = cos Yqa

as
3 0 0 0
0 0 00
az
T 0 0 0

== N = N —

b

0 0 0
0 00
0 0 0

| = N =

>

3709

(A3c)

! For simplicity, the superscript (k) is removed, unless otherwise indicated, since all variables are defined along the k™ edge.
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L 44 = ps — cos Y sin Yqa, (A4)

in which p,, and ¢, are

d
P2 = § — O + <01 ),
d 1
D3 § o1 + §0152 D
d 1
p4 - 9 OCA2 90631 )
d 1
q1 = § o1 + §a)12 5
5~ 5om)
q2 = 9 0ln2 905711 5
d 1
q3 = 6 oyl + §0Cn2
and
d 1
q4 = §< — U2 — §fxnl>» (AS)
with

d® = \/(xj —x;)* + (y — )

aﬁlf) = cos 1//(]")/1,x(x,~, ¥i) + sin 1//(]‘)h,y(x,-, Vi),
ol = cos YO h (o, ) +sin yOh, (x, 3)),
o™ — gin (//(k)h,x(x,', i) — cos x//(k)h,_l,(xi, Vi)s

nl —

o) = sin Oy (x, y;) — cos YOy (x;, v)), (A6)
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(y _ Xj—Xi
cos Yy = 70
and
sin y® = 221 (A7)

d®
The subscripts i, j, and k follow the permutation order
i=1,2,3;j=2,3, 1land k=3, 1, 2.

In Eq. (33), the incremental strain—displacement matrix differential operators B, and B, are expressed
as

Bu = (A8a)

and

—aoh
0x
oh
ay
oh oh
ax _@

Bo=|o 2 o] (A8b)
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