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Abstract

The response of moderately thick laminated panels experiencing large displacements and rotations under non-
uniform thermal loading is investigated through a nonlinear ®nite element analysis. The present nonlinear
thermoelastic analysis incorporates an anisoparametric, doubly curved, shallow shell element that is free of the

`locking' phenomenon. The e�ects of large displacements and rotations, transverse shear deformations, the coupling
between stretching and bending due to shallow geometry, and Duhamel±Neumann-type thermoelastic material
anisotropy are included in the element formulation. The equations of equilibrium are derived from the virtual work

principle, along with the co-rotational form of the total Lagrangian formulation. A non-uniform temperature ®eld
across the shell surface is approximated by piecewise-uniform temperature distributions over individual elements. In
the thickness direction, the temperature distribution is approximated linearly. Accuracy of the present analysis is

established by comparison with benchmark solutions. The numerical results are presented for various con®gurations,
including cutouts under uniform and non-uniform temperatures. The numerical results demonstrate that the present
®nite element analysis is computationally robust and e�cient. 7 2000 Elsevier Science Ltd. All rights reserved.

1. Introduction

External surfaces of modern aerospace structures are constructed from sti�ened composite laminates
because of their attractive mechanical and thermal properties. In aerospace engineering, minimum-
weight design of sti�ened panels allows the skin to experience postbuckling behavior before reaching the
ultimate loading conditions, provided that the complete compressive load is carried by sti�eners. Also,
postbuckling of such components may arise from the compressive stresses induced by a sudden
temperature rise on the skin due to aerodynamic heating at supersonic speeds. In this case, the skin
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temperature becomes higher than that of the sti�eners. Because of this temperature di�erence, the
sti�eners, which are cooler than the panels, will resist the thermal expansion of the panels along the
skin-sti�ener interface, thus initiating compressive stresses in the skin and, possibly, causing the skin to
buckle or to experience large transverse de¯ections (i.e., a softening±sti�ening type of behavior). In
order to take advantage of the postbuckling strength of these structural components, it is necessary to
perform an analysis that predicts their nonlinear response under both mechanical and thermal loading
conditions. In addition to this, the aerospace structures include openings, as well as cracks on the skin,
rendering the solution of the problem extremely di�cult with existing analytical techniques. Therefore,
an analysis based on the ®nite element method seems to be the most applicable approach to deal with
such structures (Tripathy and Rao, 1992).

Gossard et al. (1952) seems to have been the ®rst to investigate the nonlinear behavior of thermally
induced structures. By employing the Rayleigh±Ritz and Galerkin methods, they presented solutions for
initially imperfect rectangular plates subjected to tent-like temperature distributions. In their study, they
incorporated the e�ects of thermally induced stresses and initial imperfections into von Karman's
classical large-de¯ection theory. Similarly, Forray and Newman (1962) analyzed the postbuckling
response of isotropic and rectangular plates heated symmetrically about two orthogonal centerlines.
Their formulation provided ¯exibility in the choice of boundary conditions. Later, using the Rayleigh±
Ritz and Galerkin procedures, Mahayni (1966) extended the formulation to the analysis of shallow
cylindrical shells subjected to axially parabolic temperature distributions.

Also, Basuli (1968) presented an approach for the large-de¯ection analysis of plates under stationary
temperature distributions based on the concept of total potential energy. In this approach, the energy
contribution due to the second invariant of the resultant strains is neglected in the total potential energy
expression. This approximation, originally introduced by Berger (1955) for the large-de¯ection analysis
of plates, simpli®es the von Karman type of coupled nonlinear partial di�erential equations to a set of
quasi-linear, decoupled equations. Among the few investigations where a Berger±Basuli type of
approximation was employed, Pal (1969, 1973) analyzed the static and dynamic instability of heated
circular plates subjected to non-uniform temperature distribution both across the surface and through
the thickness. For dynamic analysis, Pal (1973) used Hamilton's variational principle to derive the
dynamic equilibrium equations of orthotropic plates. In this analysis, it was observed that the
bifurcation buckling behavior gradually disappears as the temperature gradients through the thickness
increase. Biswas (1974, 1976) considered the quasi-static large de¯ections of circular plates and
equilateral plates under stationary and non-stationary temperature distributions. He provided analytical
solutions for circular and equilateral plates by utilizing the Bessel functions and Fourier series
expansion, respectively. Biswas (1978, 1981) also presented formulations and solution procedures to
analyze the nonlinear behavior of heated orthotropic rectangular plates. He provided a one-term Fourier
series approximation for the transverse de¯ection (Biswas, 1981) by applying Galerkin's approach for
the solution of governing equations. This solution method led to a cubic expression relating applied
temperature to central transverse de¯ection.

Unlike the aforementioned approaches for the nonlinear analysis of panels subjected to heating,
Huang and Tauchert (1988a, 1988b) directly utilized the total potential energy expression in order to
determine the pre- and postbuckling equilibrium con®gurations of antisymmetric angle-ply laminates
subjected to uniform and nonuniform temperature loadings. The minimization of the total potential
energy expression is accomplished by the method of conjugate directions (Powell, 1964). With this
method, the minimum of a function with respect to several unknown variables is computed without
requiring the derivatives of the function with respect to these variables. In order to ensure that the
conjugate directions method converges to the actual equilibrium con®guration, Huang and Tauchert
used an incremental thermal loading procedure.

In order to analyze the thermal postbuckling response of panels with orthotropic material properties,
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Raju and Rao (1989) developed a solution based on the Rayleigh±Ritz procedure with a one-term

double-sinusoidal admissible function. They provided analytical expressions describing the temperature±

displacement path in the postbuckling range. Recently, by using these approximate techniques, Meyers

and Hyer (1990, 1991) and Singh et al. (1993) extended the range of this type of analysis to include the

nonlinear thermoelastic response of anisotropic panels. Meyers and Hyer utilized the ®rst and second

variations of the total potential energy expression to investigate bifurcation and postbuckling responses

of quasi-isotropic panels.

Although a majority of the analytical investigations were focused on the energy and variational

principles and utilized the total potential energy expression for the derivation of the equations of

equilibrium, only a few directly invoked the equations of nonlinear plate theory. In this context,

Stavsky (1963) employed the modi®ed compatibility relation and moment equilibrium equations to

derive the large-de¯ection equations for a ¯at rectangular heterogeneous plate under thermal

loading. Librescu and Souza (1991a, 1991b) developed a von Karman type of the large-de¯ection

theory for plates made of transversely isotropic materials under combined uniform temperature rise

and in-plane edge loads. Their formulation includes the e�ects of transverse shear deformations.

They focused particular attention on understanding the e�ects of shear deformations and in-plane

edge boundary conditions on the load-carrying capacity of the panel in pre- and postbuckling

equilibrium stages. Librescu and Souza (1993) and Librescu et al. (1994, 1995) further extended the

nonlinear theory to include the e�ects of non-uniform temperature distribution on ¯at and curved

panels under combined loading. Across the thickness, the temperature distribution is assumed to

vary linearly, with the inner surface of the panel being held at room temperature. Birman and

Bert (1993) also considered a combined thermal±mechanical loading. They developed analytic

formulations describing the pre- and post-equilibrium paths of shells under thermal loading. Using

the analytically derived expressions for the temperature versus central displacement, they identi®ed

the snap-through conditions for shells.

Although there has been considerable progress in the analytical predictions of ¯at and curved

panels subjected to thermo-mechanical loading, the range of applicability of these methods is

limited to simple panel con®gurations. In fact, they su�er from generality when applied to

structures with complex geometry and boundary conditions. In the context of nonlinear thermo-

mechanical analysis of structures by ®nite element methods, early attempts were reported by Rao

and Raju (1984), and Raju and Rao (1984a, 1984b). They obtained solutions for the thermal

postbuckling responses of straight (Raju and Rao, 1984a) and tapered (Raju and Rao, 1984b)

beams. Based on the approach introduced by Rao and Raju (1984), Chen and Chen (1989, 1991)

studied the thermal postbuckling response of laminated plates with and without temperature-

dependent material properties.

Madenci and Barut (1994) considered the stability and large de¯ection of ¯at and curved

composite panels with cutouts subjected to uniform temperatures. This work was extended by

Noor and Kim (1996), and Noor and Peters (1996) to the case of thermal postbuckling of

laminated panels with cutouts subjected to combined temperature and in-plane compressive and

shear loading.

Although methods for large-de¯ection and stability analysis of ¯at and curved panels under uniform

thermal loading are well established, ®nite element analyses of postbuckling behavior of composite

panels subjected to non-uniform thermal loading are rather few (Noor and Peters, 1997). This study is,

therefore, concerned with the ®nite element formulation of laminates subjected to non-uniform thermal

loading both through-the-thickness and over the surface of panels. A detailed analysis of the e�ect of

non-uniform thermal loading on the stability of ¯at and curved laminates with and without a central

hole is presented.
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2. Element development

Consider the motion of a shallow triangular shell element at initial (t= 0), deformed (t=t ), and next
deformed (t=t+Dt ) con®gurations as illustrated in Fig. 1. The element dimensions are de®ned by the
thickness (H ), area (A ), and height (h(x, y )), of the element mid-plane with respect to the element
reference plane. The non-uniform temperature distribution in the shell element is denoted by T(x, y, z ).
Based on the co-rotational form of the total Lagrangian formulation, the initial con®guration of the
shell element, which translates and rotates as the shell element deforms, is utilized in order to express
the equilibrium of the shell element.

The formulation begins with the principle of virtual work:

dWe �
�

0V

d0EEET t�Dt
0 s d 0V: �1�

Between time t and t+Dt, 0EE represents the incremental Green strain tensor in vector form. The
components of the Piola±Kirchho� stress tensor are contained in a vector denoted by t�Dt

0 s: The lower-

Fig. 1. Motion of a shallow triangular shell element.
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left subscript indicates the con®guration by which the quantity is measured. The upper-left superscripts
refer to the con®guration of the body at a speci®c time. The volume of the element at the initial
con®guration is denoted by 0V, and dWe is the virtual work done by the external forces at time t+Dt.

Under the assumption that the material properties are temperature independent and remain constant
throughout deformation, the Duhamel±Neumann stress±strain relation for an orthotropic material is
expressed as

t�Dt
0 s � Q

ÿ
t�Dt
0 EEEÿ aaa t�DtT

� � Q t�Dt
0 EEEÿQaaa t�DtT, �2�

in which Q represents the anisoparametric material properties and aa is the vector containing the
coe�cients of thermal expansion. In Eq. (2), the Green strain tensor in vector form is denoted by t�Dt

0 EEE:
The temperature ®eld at time t+Dt is represented by t+DtT. De®ning t�Dt

0 sss and t�Dt
0 ttt as

t�Dt
0 sss � Q t�Dt

0 EEE, �3a�

t�Dt
0 ttt � Qaaa t�DtT �3b�

and substituting in Eq. (2) yields

t�Dt
0 s �t�Dt

0 sssÿ t�Dt
0 ttt, �4�

where t�Dt
0 sss and t�Dt

0 ttt may be regarded as the Hookean and thermal stress vectors (Nowinski, 1978).
Although they do not represent the stresses arising from mechanical and thermal loadings, respectively,
their superposition results in the actual (Piola±Kirchho�) stress vector, t�Dt

0 s: Since the strain vector,
t�Dt
0 EEE and the temperature ®eld, t+DtT, can be decomposed between the time increments, the stress
vectors t�Dt

0 sss and t�Dt
0 ttt de®ned by Eqs. (3a) and (3b) can also be decomposed in time. Thus, the

Hookean stress vector t�Dt
0 sss is decomposed as

t�Dt
0 sss � t

0sss� 0 sss, �5�
in which t

0sss and 0ss denote the Hookean stress vectors at time t and in incremental form, respectively.
Combining Eqs. (4) and (5) gives

t�Dt
0 s � t

0sss� 0 sssÿ t�Dt
0 ttt: �6�

Substitution of Eq. (6) for t�Dt
0 s in Eq. (1) results in

dWe �
�

0V

d0EEET
ÿ
t
0sssÿ t�Dt

0 ttt
�

d 0V�
�

0V

d0EEET 0sss d 0V: �7�

The vector of incremental Green strains in Eq. (7) is de®ned as

d0EEE � d0EEEL � d0EEEN, �8�
where 0EEL and 0EEN represent the linear and nonlinear parts of the incremental Green strains in vector
form, respectively. Also, the incremental Hookean stress vector, 0ss in Eq. (7), is related to its
counterpart, 0EE, as

0sss � Q 0EEE: �9�
Substituting from Eqs. (8) and (9) for the virtual incremental strain and incremental stress

components in Eq. (7) and rearranging the terms leads to
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dWe �
�

0V

d0EEETQ 0EEE d 0V�
�

0V

d0EEETN
t
0sss d 0Vÿ

�
0V

d0EEETN
t�Dt
0 ttt d 0V

�
�

0V

d0EEETL
t
0sss d 0Vÿ

�
0V

d0EEETL
t�Dt
0 ttt d 0V:

The ®rst integral term on the right-hand side of Eq. (10) is nonlinear in terms of incremental
displacement components whereas the remaining terms are either linearly related to or independent from
the incremental displacement components. The nonlinearity of the ®rst integral term, however, may
cause di�culties in the solution of equilibrium equations. In order to relieve such di�culty in the
solution process, the linearization procedure outlined by Bathe (1982) can be employed for the
evaluation of the ®rst integral term, as the true equilibrium con®gurations will be searched by an
incremental-iterative strategy. Thus, the following approximations are employed:

d0EEE � d0EEEL

and

Q 0EEE � Q 0EEEL: �11�
Incorporating Eq. (11) into the ®rst integral term of Eq. (10) and rearranging the terms yields�

0V

d0EEETLQ 0EEEL d 0V�
�

0V

d0EEETN
t
0sss d 0Vÿ

�
0V

d0EEETN
t�Dt
0 ttt d 0V

� dWe ÿ
�

0V

d0EEETL
t
0sss d 0V�

�
0V

d0EEETL
t�Dt
0 ttt d 0V:

�12�

As shown in Fig. 2, the element is made of a layered composite laminate. Each layer is assumed to be
homogeneous, elastic, and orthotropic with elastic moduli, E1 and E2; shear modulus, G12; Poisson's
ratio, n12; and coe�cients of thermal expansion, a1 and a2. The subscripts `1' and `2' specify the
longitudinal and transverse directions relative to the ®bers in the layer. Also, the position of each ply
with respect to the element mid-plane is denoted by the local coordinate �z: Application of these
geometric and layered material properties of the shell element to Eq. (12) yields

XK
k�1

�
0A

� �zk

�zkÿ1
d0EEETLQ�k� 0EEEL d �z d 0A�

XK
k�1

�
0A

� �zk

�zkÿ1
d0EEETN

t
0sss d �z d 0Aÿ

�
0A

� �zk

�zkÿ1
d0EEETN

t�Dt
0 ttt d �z d 0A

� dWe ÿ
XK
k�1

�
0A

� �zk

�zkÿ1
d0EEETL

t
0sss d �z d 0A�

XK
k�1

�
0A

� �zk

�zkÿ1
d0EEETL

t�Dt
0 ttt d �z d 0A,

where K denotes the number of plies forming the laminate. The thickness of the k th layer is given by
tk � �zk ÿ �zkÿ1: Material property matrix ÅQ

�k�
designates the k th orthotropic lamina and is referenced to

the (x±y ) element coordinate system, as shown in Fig. 2.

2.1. Displacement ®eld

In accordance with Mindlin's theory (Mindlin, 1951), the incremental displacement components u, v,
and w in the x, y, and �z directions are expressed as

u�x, y, �z� � u0�x, y� � �zyy�x, y�,
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v�x, y, �z� � v0�x, y� � �zyx�x, y�
and

w�x, y, �z� � w0�x, y�: �14�
The functions u0 and v0 represent the in-plane displacements and w0 the out-of-plane displacements on

the mid-surface of the element. The bending (normal) rotations about the x- and y-axes are denoted by
yx and yy, respectively. The element coordinate system is chosen such that the positive x-axis points in
the direction from node 1 to node 2 of the element. As shown in Fig. 2, the element reference plane
coincides with the (x±y ) plane. The components of the incremental displacements and bending rotations

Fig. 2. Geometry and material layout of the shallow shell element with the positive directions of nodal displacements and ro-

tations.
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at each node of the element, with positive sign conventions, are illustrated in Fig. 2. The variable �z is
de®ned as

�z � zÿ h�x, y�, �15�
where h(x, y ) describes the shallow mid-surface of the shell element.

2.2. Strain ®eld

The linear part of the Green's strain tensor is based on the de®nitions given by Reissner (1945) and
Mindlin (1951), combined with the shallow shell theory introduced by Marguerre (1938). The nonlinear
strain vector, 0EEN, is the von Karman (1910) approximation of its complete form (i.e., the nonlinear
terms due to the gradients of in-plane mid-surface displacements are also included). Therefore, the linear
and nonlinear parts of the incremental Green's strain tensor for the shallow shell component are de®ned
as

0EEEL �

8>>>>><>>>>>:
u0,x ÿ th,xyy
v0,y ÿ th,yyx
u0,y � v0,x ÿt h,xyx ÿt h,yyy
w0,x � yy
w0,y � yx

9>>>>>=>>>>>;
� �z

8>>>><>>>>:
yy,x
yx,y
yx,x � yy,y
0
0

9>>>>=>>>>; �16a�

and

0EEEN � 1

2

8>>>>>><>>>>>>:

u20,x � v20,x � w2
0,x

u20,y � v20,y � w2
0,y

2�u0,xu0,y � v0,xv0,y � w0,xw0,y�
0
0

9>>>>>>=>>>>>>;
: �16b�

Substituting Eqs. (16a) and (16b) for the incremental strain components and performing integration
along the thickness direction in Eq. (13) leads to�

0A

d0eTLC 0eL d 0A�
�

0A

d0eTN
t
0 Ãsss d 0Aÿ

�
0A

d0eTN
t�Dt
0 Ãttt d 0A

� dWe ÿ
�

0A

d0eTL
t
0 Ãsss d 0A�

�
0A

d0eTL
t�Dt
0 Ãttt d 0A,

�17�

in which C is the constitutive matrix composed of the extensional, A, membrane-bending coupling, B,
bending, D and transverse shear, G, sti�ness matrices (Yang et al., 1966),

C �
24A B 0

B D 0
0 0 G

35, �18�

with
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Aij �
XK
k�1

Q
�k�
ij � �zk ÿ �zkÿ1 �

Bij � 1

2

XK
k�1

Q
�k�
ij

ÿ
�z2k ÿ �z2kÿ1

�
Dij � 1

3

XK
k�1

Q
�n�
ij

ÿ
�z3k ÿ �z3kÿ1

�
Glm �

XK
k�1

Q
�n�
l�3, m�3� �zk ÿ �zkÿ1 �

9>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>;

i, j � 1,2,3
l, m � 1,2

: �19�

The vectors t
0 Ãsss and t�Dt

0 Ãttt contain, respectively, the following stress resultants:

t
0 ÃsssT �

n
t
0 Ãsss

T

E ,
t
0 ÃsssT

k ,
t
0 ÃsssT

g

o
�20a�

and

t�Dt
0 ÃtttT �

n
t�Dt
0 ÃtttTE ,

t�Dt
0 ÃtttTk ,

t�Dt
0 ÃtttTg

o
, �20b�

where the subscripts E, k and g denote the Hookean and thermal stress resultants associated with the in-
plane, bending and transverse shear deformations, respectively. These stress resultant vectors are
established by integrating the Hookean � t0sss� and the thermal stress � t�Dt0 ttt� vectors across the thickness
of the panel as given by

ÿ
t
0 ÃsssE,

t�Dt
0 ÃtttE

� �
0B@
8<:

t
0Nsxx
t
0Nsyy
t
0Nsxy

9=;,
8<:

t�Dt
0 Ntxx
t�Dt
0 Ntyy
t�Dt
0 Ntxy

9=;
1CA �XK

k�1

� �zk

�zkÿ1

0B@
8<:

t
0sxx
t
0syy
t
0sxy

9=;,
8<:

t�Dt
0 txx
t�Dt
0 tyy
t�Dt
0 txy

9=;
1CA d �z, �21a�

ÿ
t
0 Ãsssk,

t�Dt
0 Ãtttk

� �
0B@
8<:

t
0Msxx
t
0Msyy
t
0Msxy

9=;,
8<:

t�Dt
0 Mtxx
t�Dt
0 Mtyy
t�Dt
0 Mtxy

9=;
1CA �XK

k�1

� �zk

�zkÿ1
z

0B@
8<:

t
0sxx
t
0syy
t
0sxy

9=;,
8<:

t�Dt
0 txx
t�Dt
0 tyy
t�Dt
0 txy

9=;
1CA d �z �21b�

and

ÿ
t
0 Ãsssg,

t�Dt
0 Ãtttg

� � �� t
0Qsxz
t
0Qsyz

�
,

�
t�Dt
0 Qtxz
t�Dt
0 Qtyz

��
�
XK
k�1

� �zk

�zkÿ1

��
t
0sxz
t
0syz

�
,

�
t�Dt
0 txz
t�Dt
0 tyz

��
d �z: �21c�

The vectors 0eL and 0eN, containing, respectively, the linear and nonlinear parts of the Green strain
components measured at the mid-surface, are de®ned as

0eTL �
n

0e
T
EL, 0e

T
kL, 0e

T
gL

o
, �22�

with
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0eEL �
8<: u0,x ÿ th,xyy
v0,y ÿ th,yyx
u0,y � v0,x ÿ th,xyx ÿ th,yyy

9=;, �23a�

0ekL �
8<:
yy,x
yx,y
yx,x � yy,y

9=;, �23b�

0egL �
�
w0,x � yy
w0,y � yx

�
�23c�

and

0eN �
�

0e
T
EN, 0T, 0T

	
, �24�

with

0eEN � 1

2

8>><>>:
u20,x � v20,x � w2

0,x

u20,y � v20,y � w2
0,y

2�u0,xu0,y � v0,xv0,y � w0,xw0,y�

9>>=>>;: �25�

Utilizing the C 0-anisoparametric interpolation functions derived by Tessler (1990), the incremental in-
plane, transverse, and out-of-plane rotational components on the mid-surface of the element are
approximated as�

u0
v0

�
�
X3
k�1

Nk

�
u0k
v0k

�
�
X9
k�4

Nk

�
u�0k
v�0k

�
�Nc

�
u0c
v0c

�
,

w0 �
X3
k�1

Mkw0k �
X6
k�4

Mkw
�
0k

and �
yx
yy

�
�
X3
k�1

zk

�
yxk
yyk

�
: �26�

The in-plane displacement components, u0 and v0, are approximated by cubic interpolation functions,
Nk and Nc. The nodal values at the vertices are represented by u0k and v0k. The remaining nodal
values are associated with the nodes along the edges, u�0k and v�0k, and at the element centroid, u0c and
v0c. The transverse displacement ®eld, w0, is approximated by quadratic interpolation functions, Mk,
with w0k and w�0k representing the nodal values at the vertices and the middle of the edges, respectively.
The out-of-plane rotational components, yx and yy, are approximated by linear interpolation functions,
zk, with yxk and yyk representing nodal values at the vertices. The explicit forms of these interpolation
functions are given in Appendix A.

In matrix form, Eq. (26) can be rewritten as
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u0 � Nuv� N
�

v
� � Ncvc �27a�

and

yyy0 � Nyv, �27b�
where

uT
0 � fu0, v0, w0g and yyyT0 � fyx, yy, 0g,

vT � fu01, v01, w01, yx1, yy1, yz1, . . . , u03, v03, w03, yx3, yy3, yz3g,

v
�T � �u�04, . . . , u�09, v

�
04, . . . , v�09, w

�
04, w

�
05, w

�
06

	
and

vT
c � fu0c, v0cg:

The shape-function matrices Nu and N�u are dependent on Nk and Mk, with k=1,..., 9 and k=1,...,
6, respectively. The matrix Nc contains only Nc. The matrix Ny is composed of the area coordinates xk,
with k = 1, 2, 3. Although it is arti®cial, the rotational variable normal to the reference plane, yzk, is
included in the formulation because transformation to global coordinates leads to non-zero rotations
about all axes. The explicit expressions for the shape-function matrices are given in Appendix A.

The in-plane and transverse displacement components at the edge nodes are eliminated prior to the
construction of the sti�ness matrix by imposing the edge constraints on the linear part of the shear
membrane strains. These constraints, introduced by Tessler (1990), are given in the form

@

@s

�
@

@s
w0�s� � yn�s�

��k�
� 0

and

@ p

@s p

8>><>>:
@

@s
us�s� ÿ yn

@

@s
h�n, s�

@

@s
vn�s� ÿ yn

@

@n
h�n, s� ÿ ys

@

@s
h�n, s�

9>>=>>; � 0, �28�

with k = 1, 2, 3 and p = 1, 2. The subscripts r and n denote the directions tangent and normal to the
edge of the element. The k th edge is speci®ed by a superscript k. The displacement components tangent
and normal to the k th edge of the element are denoted by u(s ) and v(s ), respectively. These
displacements and rotations are related to their counterparts, de®ned with respect to the element
coordinates, through appropriate transformations.

Imposing the constraints given by Eq. (28) along the edge of the element leads to the following
transformation between intra-edge displacements and corner displacements:

vb
� � Lbv with b � u, v, w �29�

or
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v
� � Lv, �30�

where

LT � �LT
u LT

v LT
w

�
and

vT
�
�
"

vT
u

�
vT
v

�
vT
w

�
#
, �31�

with

vT
u

�
� �u�04, . . . , u�09

	
,

vT
v

�
� �v�04, . . . , v�09

	
and

vT
w

�
� �w�04, w�05, w�06	:

The explicit forms of the transformation matrices Lb (b=u, v, w ) are the same as those given by
Tessler (1990). These matrices are presented in Appendix A for completeness.

After substitution from Eq. (30) into Eqs. (27a) and (27b) can be expressed in compact form as�
u0

yyy0

�
�
�

ÅNu Nc

Ny 0

��
v
vc

�
, �32�

in which ÅNu � Nu � N�u L: Based on this form, the linear part of the strain vector, 0eL, given by Eq. (16a)
can be cast into

0eL � �Bu, By �
�

u0

yyy0

�
, �33�

where Bu and By constitute the strain±displacement transformation matrices. The explicit forms of Bu

and By are given in Appendix A. Considering 0eL in Eq. (33), the ®rst integral in Eq. (17) can be
expressed in the form�

0A

d0eTLC 0eL d 0A �
�
dv
dvc

��
kL11 kL12

kT
L12 kL22

��
v
vc

�
, �34�

in which

kL11 �
�

0A

�
ÅN
T

u BT
u CBu

ÅNu � ÅN
T

u BT
u CByNy � NT

y BT
y CBu

ÅNu � NT
y BT

y CByNy

�
d0A,
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kL12 �
�

0A

�
ÅN
T

u BT
u CBuNc � NT

y BT
y CBuNc

�
d0A

and

kL22 �
�

0A

NT
c BT

u CBuNc d0A:

In matrix form, the nonlinear part of the strain vector, 0eN, given by Eq. (16b) becomes

0eTN �
1

2
feeeTDT, 0T, 0Tg, �35�

in which

eee � fu0,x, v0,x, w0,x, u0,y, v0,y, w0,yg �36a�

and

D �
24 u0,x v0,x w0,x 0 0 0
0 0 0 u0,y v0,y w0,y

u0,y v0,y w0,y u0,x v0,x w0,x

35, �36b�

with the properties of

dDeee � Ddeee

and

DT
ÿ
t
0 ÃsssE,

t�Dt
0 ÃtttE

� � ÿ t
0SE,

t�Dt
0 TE

�
eee, �37�

where

t
0SE �

�
t
0NsxxI t

0NsxyI
t
0NsxyI

t
0NsyyI

�
�38a�

and

t�Dt
0 TE �

�
t�Dt
0 NtxxI t�Dt

0 NtxyI
t�Dt
0 NtxyI

t�Dt
0 NtyyI

�
, �38b�

with I being a 3� 3 identity matrix. The vector E can be expressed in the form

eee � Bu0, �39�

with the matrix di�erential operator

BT �
�

I
@

@x
, I
@

@y

�
: �40�

Using this representation of 0eN and substituting for u0 from Eq. (32), the second and the third
integral terms in Eq. (17) can be rewritten as
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�
0A

d0eTN
t
0 Ãsss d0A �

�
dv
dvc

�T�
ks11 ks12

kT
s12 ks22

��
v
vc

�
, �41a�

in which

ks11 �
�

0A

ÅN
T

uBT t
0SEB ÅNu d0A,

ks12 �
�

0A

ÅN
T

uBT t
0SEBNc d0A,

ks22 �
�

0A

NT
c BT t

0SEBNc d0A

and �
0A

d0eTN
t�Dt
0 ÃtttE d0A �

�
dv
dvc

�T�
kt11 kt12

kT
t12 kt22

��
v
vc

�
, �41b�

in which

kt11 �
�

0A

ÅN
T

uBT t�Dt
0 TEB ÅNu d0A,

kt12 �
�

0A

ÅN
T

uBT t�Dt
0 TEBNc d0A

and

kt22 �
�

0A

NT
c BT t�Dt

0 TEBNc d0A:

Similarly, by using the incremental linear strain±displacement relations from Eq. (33) and the ®nite
element displacement approximations given by Eq. (32), the fourth and the ®fth integral terms in Eq.
(17) can be expressed in the following form:�

0A

d0eTL
t
0 Ãsss d0A �

�
dv
dvc

�T�
fs
fsc

�
, �42�

in which

fs �
�

0A

�
ÅN
T

u BT
u � NT

y BT
y

�
t
0 Ãsss d0A, �43a�

fsc �
�

0A

NT
c BT

c
t
0 Ãsss d0A �43b�

and
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�
0A

d0eTL
t�Dt
0 Ãttt d0A �

�
dv
dvc

�T�
ft
ftc

�
, �44�

in which

ft �
�

0A

�
ÅN
T

u BT
u � NT

y BT
y

�
t�Dt
0 Ãttt d0A �45a�

and

ftc �
�

0A

NT
c BT

c
t�Dt
0 Ãttt d0A �45b�

2.3. Computation of internal forces

In order to complete the ®nite element formulation of the geometric sti�ness matrices, ksij and ktij,
and internal force vectors, (fs, fsc) and (ft, ftc), the resultant stress vectors t

0 Ãsss and t�Dt
0 Ãttt must be

determined a priori. The resultant stress vector t
0sss can be determined incrementally based on the stress

decomposition expressed as

t
0 Ãsss �tÿDt

0 Ãsss� 0 Ãsss�, �46�
where 0 Ãsss� represents the incremental resultant stress vector (Hookean) in the preceding time step. The
vector 0 Ãsss� is related to the incremental resultant strain vector, 0e

�, in the preceding time step, by the
constitutive relation

0 Ãsss� � C 0e�: �47�
The incremental resultant strain vector, 0e

�, is composed of its linear and nonlinear components in the
form

0e� � 0e
�
L � 0e

�
N, �48�

in which 0e�L and 0e
�
N are de®ned by Eqs. (33) and (35), respectively. Also, the incremental

displacements, u�0, and the incremental rotations, yyy�0, are evaluated in the preceding time step.
Using the interpolation functions for the displacements and rotations given in Eq. (32) and utilizing

the matrix form of strain±displacement relations given in Eq. (33), the linear part of the incremental
resultant strain vector, 0e

�
L, is written as

0e�L �
�

Bu By
�� ÅNu Nc

Ny 0

��
v�

v�c

�
: �49�

The nonlinear incremental resultant strain vector, 0e
�
N, contains the terms associated with the in-plane

deformations, i.e.,

0e�TN �
�

0e�TEN , 0T, 0T
	
, �50�

where the vector 0e
�
EN �� 1=2eee�TD�T� is de®ned in Eq. (35) in sub-matrix form. Similar to the linear

incremental strain component, the ®nite element representation of the vector 0e
�
EN is achieved by

combining Eqs. (32) and (50) as
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0e�EN �
1

2

�
v�T v�Tc

��NT
u

NT
c

�
BTB

�
ÅNu Nc

�� v�

v�c

�
, �51�

where the matrices v�, v�c , Nu, Nc, and B are de®ned as

v� �
24 v� 0 0

0 v� 0
0 0 v�

35,

v�c �
24 v�c 0 0

0 v�c 0
0 0 v�c

35,

Nu �
24 ÅNu 0 0

0 ÅNu 0
0 0 ÅNu

35,

Nc �
24Nc 0 0

0 Nc 0
0 0 Nc

35
and

B �

26664
I
@

@x
0 I

@

@y

0 I
@

@y
I
@

@x

37775:
The matrix di�erential operator, B, is given in Eq. (40).

Known incremental nodal displacement vectors, v� and v�c , from the preceding time step permit the
computation of the linear and nonlinear incremental resultant strain vectors, 0e�L and 0e�N, from Eqs.
(49) and (51), respectively. Although the incremental nodal displacement vectors are determined from
the equations of equilibrium, the direct utilization of these vectors to Eqs. (49) and (51) may cause
di�culties and even deterioration of computed results from their actual values. This is mainly due to the
incremental rotations, which can easily violate vector operations when they become large in magnitude.
An in-depth discussion on ®nite rotations and a single pseudo vector representation of a set of
consecutive rotations can be found in the paper by Argyris (1982). Therefore, the components of v� and
v�c must be treated in a di�erent way in order to compute the strains and stresses accurately. In the
nonlinear ®nite element analysis of plates and shells, a common approach to handling large rotations
and to simplifying the computation of internal forces is to employ a co-rotational (moving or convected)
coordinate system. Argyris et al. (1964) and Wempner (1969) are among the early investigators who
applied the convected co-ordinate system to the solution of nonlinear static problems; Belytschko and
Hsieh (1973) also successfully employed the same approach to the solution of nonlinear dynamic
problems.

In the co-rotational formulation, a moving Cartesian co-ordinate system containing the initial
con®guration of an element is rigidly tied to the element. The con®guration of the element described in
this coordinate system may be called the ghost con®guration. As the actual element deforms, the ghost
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con®guration follows the element as a rigid-body. Thus, the distance between the deformed element and
the undeformed rigid ghost element is a measure of the actual deformations. The incremental strains
given in Eqs. (49) and (51) can then be computed, once the deformational part of the element
displacements is extracted from the total displacements of the element, because the rigid-body part of
the displacements do not create strains and stresses. In this analysis, the deformational parts of the
incremental displacements and rotations, represented by �v�d, v�dc�, are extracted from the total
incremental displacements and rotations, �v�, v�c �, by utilizing the methods proposed by Bathe and Ho
(1981) for the deformational displacements and by Rankin and Brogan (1986) for the deformational
rotations. In the computation of the incremental strains Eq. (48) and incremental stresses Eq. (47), the
vectors �v�d, v�dc� are used in place of the incremental nodal vectors �v�, v�c �: Therefore, with the resultant
stresses known from Eq. (47), the generation of the geometric sti�ness matrix ksij and the internal force
vector (fs, fsc) is completed.

Unlike the incremental resultant stress vector 0ss
�, computation of the resultant thermal stress vector

is straightforward because a direct relation between the thermal stresses and the applied temperature can
be established, regardless of the magnitude of the displacements or deformations. In this analysis, the
temperature distribution over the surface and across the thickness of the element is assumed to be
linear:

T�x, y, �z� � 1

2
T ����x, y�

�
1� 2 �z

H

�
� 1

2
T �ÿ��x, y�

�
1ÿ 2 �z

H

�
, �52�

with

�
T ����x, y�
T ÿ�x, y�

�
� x1

8<:T ���1

T
�ÿ�
1

9=;� x2

8<:T ���2

T
�ÿ�
2

9=;� x3

8<:T ���3

T
�ÿ�
3

9=;: �53�

In Eq. (53), the temperature distributions over the upper and lower faces of the element are
represented by the temperature ®eld functions T (+)(x, y ) and T (ÿ)(x, y ), respectively. These functions
are also approximated linearly in terms of temperatures at the nodal points by using the area
coordinates z1, z2 and z3, which are given in Appendix A.

Based on the assumption that the material properties are independent of the temperature change, the
relation between the thermal stress vector, t�Dt

0 ttt, and the applied temperature, t+DtT as de®ned by Eq.
(52), can be written as

t�Dt
0 ttt � 1

2
Q�k�aaa�k�

�
t�DtT ����x, y�

�
1� 2 �z

H

�
� T �ÿ��x, y�

�
1ÿ 2 �z

H

��
, �54�

in which the vector aa(k ) contains the thermal expansion coe�cients of the k th layer de®ned with respect
to the element coordinate system in the form

aaa�k�T �
n
a�k�xx , a

�k�
yy , a

�k�
xy , 0, 0

o
: �55�

The material property matrix for the k th lamina is also used in Eq. (18) for the construction of
material properties relating the components of the incremental resultant stress vector 0 Ãsss to those of the
incremental resultant strain vector, 0e.

Substituting from Eq. (54) for the terms involving t�Dt
0 ttt in Eq. (13) and carrying out the integration

along the vertical direction, �z, gives the relation between the resultant thermal stress vector, t�Dt
0 Ãttt, and

the applied temperature, t+DtT. The resulting expressions for t�Dt
0 Ãttt can then be written as
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t�Dt
0 Ãttt � LLL��� t�DtT ��� � LLL�ÿ� t�DtT �ÿ�, �56�

where LL(+) and LL(ÿ) are, respectively,

LLL���T �
n
LLL���TE , LLL���Tk , 0T

o
, �57�

with

LLL���E �
1

2

XK
k�1

Q�k�aaa�k�
�
� �zk ÿ �zkÿ1 � � 1

H

ÿ
�z2k ÿ �z2kÿ1

��
, �58a�

LLL���k �
1

2

XK
k�1

Q�k�aaa�k�
�
1

2

ÿ
�z2k ÿ �z2kÿ1

�
� 2

3H

ÿ
�z3k ÿ �z3kÿ1

��
�58b�

and

LLL�ÿ�T �
n
LLL�ÿ�TE , LLL�ÿ�Tk , 0T

o
, �59�

with

LLL�ÿ�E �
1

2

XK
k�1

Q�k�aaa�k�
�
� �zk ÿ �zkÿ1 � ÿ 1

H

ÿ
�z2k ÿ �z2kÿ1

�� �60a�

and

LLL�ÿ�k �
1

2

XK
k�1

Q�k�aaa�k�
�
1

2

ÿ
�z2k ÿ �z2kÿ1

�ÿ 2

3H

ÿ
�z3k ÿ �z3kÿ1

��
: �60b�

Finally, for a speci®ed temperature distribution, t+DtT in the form of Eqs. (52) and (53), substituting
from Eq. (56) for the resultant thermal stress vector, t�Dt

0 Ãttt, in Eq. (37) and following through Eqs. (41a)
and (41b) complete the formulation of the geometric sti�ness matrix arising from thermal loading.

In the derivation of the thermal loading vector, (ft, ftc), the thermal stress vectors, t�Dt
0 Ãttt��� and

t�Dt
0 Ãttt�ÿ�, are de®ned in the form

t�Dt
0 Ãttt��� � LLL��� t�DtT ��� �61a�

and

t�Dt
0 Ãttt�ÿ� � LLL�ÿ� t�DtT �ÿ�: �61b�

Using these relations, the resultant thermal stress vector, t�Dt
0 Ãttt, can be decomposed as

t�Dt
0 Ãttt � t�Dt

0 Ãttt
��� � t�Dt

0 Ãttt
�ÿ�
: �62�

Similarly, using Eq. (62), the thermal loading vector, (ft, ftc), can be decomposed as�
ft
ftc

�
�
(

f ���t

f ���tc

)
�
(

f �ÿ�t

f �ÿ�tc

)
, �63�
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with

f ���t �
�

0A

�
ÅN
T

u BT
u � NT

y BT
y

�
LLL��� t�DtT ��� d 0A, �64a�

f ���tc �
�

0A

NT
c BT

cLLL
��� t�DtT ��� d 0A, �64b�

f �ÿ�t �
�

0A

�
ÅN
T

u BT
u � NT

y BT
y

�
LLL�ÿ� t�DtT �ÿ� d 0A �64c�

and

f �ÿ�tc �
�

0A

NT
c BT

cLLL
�ÿ� t�DtT �ÿ� d 0A: �64d�

2.4. External virtual work

The virtual work due to external nodal and traction forces in the k th element is expressed as

dWe �
�
dv
dvc

�
�
�

fe
fec

�
, �65�

in which

fe � f �nodal�
e �

�
0A

NT
uP d 0A �66a�

and

fec � f �nodal�
ec �

�
0A

NT
ucP d 0A, �66b�

with

PT � f0, 0, Pzg: �67�
In this analysis, only the externally applied pressure, Pz, is considered in the traction vector, P.

3. Incremental equilibrium equations

Substituting Eqs. (65), (34), (41a), (41b), (2) and (44) in the form of Eq. (63) into the statement of
virtual work Eq. (17) and requiring the virtual displacements to be arbitrary result in�

kT11 kT12

kT
T12 kT22

��
v
vc

�
�
�

fe
fec

�
ÿ
�

fs
fsc

�
�
(

f ���t
f ���tc

)
�
(

f �ÿ�t
f �ÿ�tc

)
, �68�

in which kTij form the tangential sti�ness matrix de®ned by
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kTij � kLij � ksij ÿ ktij �i, j � 1, 2�: �69�

4. Numerical results

The accuracy of this element is validated by modeling a previously considered cylindrically curved
laminate subjected to a uniform temperature distribution as shown in Fig. 3(a). The geometric
dimensions and the material properties are the same as those used by Huang and Tauchert (1991). The
planform dimensions, L and W, are both equal to 160 cm. The panel thickness, H, and the radius of
curvature, R, are equal to 0.8 cm and 800 cm, respectively. Each lamina forming the panel has the
material properties E1=138 GPa, E2=8.28 Gpa, G12=6.9 GPa, n12=0.33, aL=0.18 � 10ÿ6/8C and
a2=27 � 10ÿ6/8C. Due to the presence of symmetry, only a quarter of the panel is modeled, with
boundary conditions speci®ed as

Along symmetry line (x=W/2): u=w,x=0
Along symmetry line ( y=L/2): v=w,y=0
Along the edges (x=W, y=L ): u=v=w=0.

A comparison of the results describing the relationship between temperature and de¯ection at two
di�erent locations for a specially orthotropic, thick, curved panel is given in Fig. 3(b). As can be seen,
the comparison re¯ects close agreement between these two analyses.

The capability of the present shell element under non-uniform temperature distributions is
demonstrated by considering a simply supported ¯at laminate with/without a hole subjected to a non-
uniform through-the-thickness temperature distribution, as shown in Fig. 4. In this ®gure, the plate has
square planform dimensions, with L=W = 0.254 m. The simply supported boundary conditions along
the horizontal and vertical edges are given as

Along the horizontal edges ( y=2L/2): u=v=w=yy=0
Along the vertical edges (x=2W/2): w=yx=0.

The panel is made up of a quasi-isotropic laminate, with stacking sequence given as [+458/ÿ458/08/
908]2S, where the ®ber orientation of each layer is denoted by y and measured with respect to the y-axis,
as shown in Fig. 4. The material properties of each layer are speci®ed as E1=130.3 Gpa, E2=9.377 Gpa,
G12=4.502 Gpa, n12=0.33, a1=0.139 � 10ÿ6/8C and a2=9 � 10ÿ6/8C. Also, each layer has an equal
thickness of tk=0.127 mm.

The temperature distributions on the upper and lower faces of the panel are considered to be uniform
and are denoted as Tu and Tb, respectively. Assuming a linear temperature variation through the
thickness of the panel, the temperature distribution at any point in the panel can be given by

T�x, y, �z� � 1

2

�
1� 2 �z

H

�
Tu � 1

2

�
1ÿ 2 �z

H

�
Tb,

where H is the half thickness (tk� 8) of the panel.
In order to investigate the panel response for varying values of Tu and Tb, the following parameter

substitutions are used:

b � Tu

Tb

and l0 � Tu � Tb

2
,

where b is a constant parameter. Note that
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Fig. 3. Cylindrical laminate subjected to uniform thermal loading: (a) geometry and material properties and (b) comparison of

results.
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Tu

Tb

� 0�)Tu � 0 and Tb 6� 0,

Tu

Tb

� 1�)Tu 6� 0 and Tb � 0

and

Tu

Tb

� 1�)Tu � Tb �uniform temperature increase�:

The e�ect of non-uniform through-the-thickness temperature variation is investigated by considering
the panel (a) without a cutout and (b) with a concentric circular cutout with radius r = 0.3W. Fig. 5
shows applied temperature at the mid-surface, l0, versus the out-of-plane de¯ections measured (a) at the
center of the panel without a hole and (b) at (x = 0, y=r ) of the panel with a hole. As can be seen,
both cases (a) and (b) yield the same trend in their load±de¯ection paths. As b approaches 1, the panel
response in both cases is close to bifuraction behavior (at b=bcr=1, there is bifurcation in both cases).
Near b=0 and b=1, the softening/sti�ening type of large-de¯ection behavior is taken over by the
sti�ening behavior, as expected. In the case of the panel with a hole, the critical buckling temperature
increases slightly.

In the next demonstration problem, a cylindrically curved, angle-ply laminate subjected to non-
uniform thermal loading is considered. The geometric dimensions and the material properties of the
panel are shown in Fig. 6. The simply supported boundary conditions are as follows:

Along the horizontal edges ( y=0 and L ): v=w=yy=0
Along the vertical edges (x=0 and w ): w=yx=0.

Also, the horizontal movement of the panel at x=w/2 and y = 0 is suppressed in order to prevent
rigid-body translation of the panel in the horizontal direciton. The temperature distributions on the

Fig. 4. Flat laminate with/without a hole under non-uniform through-the-thickness temperature distribution.
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upper and lower faces of the panel are considered to be in the form of one-term double-sinosoidal
functions with magnitudes Tu and Tb, respectively. Hence, at any point, the through-the-thickness
temperature distribution is obtained from

T�x, y, �z� � 1

2

�
1ÿ 2 �z

H

�
Tu�x, y� � 1

2

�
1� 2 �z

H

�
Tb�x, y�:

The panel's nonlinear response under non-uniform temperature distributions is investigated by
employing the same parameters, b and l_0, as de®ned in the preceding example. Furthermore, the e�ect
of curvature is studied by considering the panel with radii of curvatures (a) R= 20W and (b) R= 5W,
where W is the projected width of the panel on the (X±Y ) plane. For di�erent values of b ranging from
0 to 1, the plots for applied temperature, l0, versus the out-of-plane displacement measured at the
center (x=W/z, y=L/z ) of the panel for both cases are illustrated in Fig. 7. It can be clearly seen by
comparing Fig. 7(a and b) that the curvature of the panel signi®cantly in¯uences the panel's response. In
addition, the responses before and after bcr (b at which bifurcation occurs) are unsymmetric in
comparison to the symmetric response of the ¯at plate observed in the preceding example. In Fig. 7(a),
bcr for the shallow panel (R= 20W ) is between 0.675 and 0.68. The response beyond bcr yields upward
displacement, and the panel possesses a behavior sti�er than the panel at b< bcr.

Fig. 6. Cylindrical laminate subjected to non-uniform temperature distribution.
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In the case of the panel with smaller radius of curvature (R = 5W ), the bifurcation point, bcr, is
observed between b=0.5 and b=0.6. The panel exhibits snap-through and snap-back type postbuckling
behavior between b=0 and b=0.5. Between b=0.5 and b=0.6, the panel goes through either a
postbuckling behavior or a large-de¯ection behavior. The response beyond bcr is purely of the large-
de¯ection type.

5. Conclusions

In this analysis, the e�ects of non-uniform temperature variation across the shell surface and through
the thickness of ¯at and curved laminates have been investigated by a nonlinear FE analysis. De®ning a
constant parameter, b, as the ratio between the thermal loads on the upper and lower faces of the panel,
a series of FE analyses with the present shell element were performed to predict and understand the
behavior of the panels for various values of b, along with di�erent hole sizes and radii of curvatures of
curved panels.

For ¯at panels, the non-uniform temperature variation resulted in a sti�ening/ softening type of large-
de¯ection response. The responses between b=0 and b=1 and between b=1 and b=1 were the same
in magnitude, but opposite in direction (the bifurcation was at b=bcr=1). The hole size had little e�ect
on the responses and no e�ect on the de¯ection patterns.

For curved panels, the non-uniform temperature variation resulted in large-de¯ection, snap-through,
and snap-back phenomena. It was observed that, as the curvature of the panel increased, bcr decreased
and the postbuckling response between b=0 and b =1 changed signi®cantly.

Fig. 7. E�ect of curvature and non-uniform through-the-thickness temperature distribution on the response of the cylindrical panel

with (a) R=20W and (b) R=5W.
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Appendix A

In Eq. (26), the interpolation functions Nk, Mk and xk for the triangular element given in Fig. 8 are
expressed as

Ni � 1

2
zi�3zi ÿ 1��3zi ÿ 2� i � 1, 2, 3,

N4 � 9

2
z1z2�3z1 ÿ 1�,

N5 � 9

2
z1z2�3z2 ÿ 1�,

Fig. 8. Anisoparametric nodal con®gurations of (a) in-plane displacements, u0 and v0, (b) transverse displacement, w0, and (c) out-

of-plane rotations, yx and yy.

A. Barut et al. / International Journal of Solids and Structures 37 (2000) 3681±37133706



N6 � 9

2
z2z3�3z2 ÿ 1�,

N7 � 9

2
z2z3�3z3 ÿ 1�,

N8 � 9

2
z1z3�3z3 ÿ 1�,

N9 � 9

2
z1z3�3z1 ÿ 1�,

Nc � 27z1z2z3,

Mi � zi�2zi ÿ 1� i � 1, 2, 3,

M4 � 4z1z2,

M5 � 4z2z3

and

M6 � 4z3z1, �A1�

where the area parametric coordinates, zi, are de®ned by

zi �
1

2A
�ci � bix� aiy�,

in which

ai � xk ÿ xj; bi � yj ÿ yk; ci � xjyk ÿ yjxk; and A � a3b2 ÿ b3a2
2

,

with xi and yi representing the coordinates of the i th node of the element. In Eqs. (27a) and (27b), ÅNu,
N�u , Nc and Ny are constructed as

Nu �
24N1 0 0 0 0 0 N2 0 0 0 0 0 N3 0 0 0 0 0
0 N1 0 0 0 0 0 N2 0 0 0 0 0 N3 0 0 0 0
0 0 M1 0 0 0 0 0 M2 0 0 0 0 0 M3 0 0 0

35, �A2a�

Nu

�
�
24N4 N5 N6 N7 N8 N9 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 N4 N5 N6 N7 N8 N9 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 M4 M5 M6

35,
�A2b�
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Nc �
24Nc 0
0 Nc

0 0

35, �A2c�

Ny �
24 0 0 0 z1 0 0 0 0 0 z2 0 0 0 0 0 z3 0 0
0 0 0 0 z1 0 0 0 0 0 z2 0 0 0 0 0 z3 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

35: �A2d�

The matrices Lu, Lv, and Lw in Eq. (29) are expressed in the form

Lu �

2666666666666666666664

2

3
0 0 L�3�11 L�3�12 0

1

3
0 0 L�3�13 L�3�14 0 0 0 0 0 0 0

1

3
0 0 L�3�31 L�3�32 0

2

3
0 0 L�3�33 L�3�34 0 0 0 0 0 0 0

0 0 0 0 0 0
2

3
0 0 L�1�11 L�1�12 0

1

3
0 0 L�1�13 L�1�14 0

0 0 0 0 0 0
1

3
0 0 L�1�31 L�1�32 0

2

3
0 0 L�1�33 L�1�34 0

1

3
0 0 L�2�13 L�2�14 0 0 0 0 0 0 0

2

3
0 0 L�2�11 L�2�34 0

2

3
0 0 L�2�33 L�2�34 0 0 0 0 0 0 0

1

3
0 0 L�2�31 L�2�32 0

3777777777777777777775

, �A3a�

Lv �

2666666666666666666664

0
2

3
0 L�3�21 L�3�22 0 0

1

3
0 L�3�23 L�3�24 0 0 0 0 0 0 0

0
1

3
0 L�3�41 L�3�42 0 0

2

3
0 L�3�43 L�3�44 0 0 0 0 0 0 0

0 0 0 0 0 0 0
2

3
0 L�1�21 L�1�22 0 0

1

3
0 L�1�23 L�1�24 0

0 0 0 0 0 0 0
1

3
0 L�1�41 L�1�42 0 0

2

3
0 L�1�43 L�1�44 0

0
1

3
0 L�2�23 L�2�24 0 0 0 0 0 0 0 0

2

3
0 L�2�21 L�2�22 0

0
2

3
0 L�2�43 L�2�44 0 0 0 0 0 0 0 0

1

3
0 L�2�41 L�2�42 0

3777777777777777777775

, �A3b�

and

A. Barut et al. / International Journal of Solids and Structures 37 (2000) 3681±37133708



Lw �

266666664
0 0

1

2

b3
8

ÿa3
8

0 0 0
1

2
ÿb3

8

a3
8

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
1

2

b1
8

ÿa1
8

0 0 0
1

2
ÿb1

8

a1
8

0

0 0
1

2
ÿb2

8

a2
8

0 0 0 0 0 0 0 0 0
1

2

b2
8

ÿa2
8

0

377777775, �A3c�

with L�k�mn de®ned as1:

L11 � p1 ÿ cos c sin cq1,

L12 � sin2 cq1,

L13 � p2 ÿ cos c sin cq2,

L14 � sin2 cq2,

L21 � cos2 cq1,

L22 � p1 ÿ cos c sin cq1,

L23 � cos2 cq2,

L24 � p2 ÿ cos c sin cq2,

L31 � p3 ÿ cos c sin cq3,

L32 � sin2 cq3,

L33 � p4 ÿ cos c sin cq4,

L34 � sin2 cq4,

L41 � cos2 cq3,

L42 � p3 ÿ cos c sin cq3,

L43 � cos2 cq4

and

1 For simplicity, the superscript (k ) is removed, unless otherwise indicated, since all variables are de®ned along the k th edge.
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L44 � p4 ÿ cos c sin cq4, �A4�

in which pm and qm are

p1 � d

9

�
as1 ÿ 1

9
as2

�
,

p2 � d

9

�
ÿ as2 � 1

9
as1

�
,

p3 � d

9

�
as1 � 1

9
as2

�
,

p4 � d

9

�
ÿ as2 ÿ 1

9
as1

�
,

q1 � d

9

�
an1 � 1

9
an2

�
,

q2 � d

9

�
ÿ an2 � 1

9
an1

�
,

q3 � d

9

�
an1 � 1

9
an2

�
and

q4 � d

9

�
ÿ an2 ÿ 1

9
an1

�
, �A5�

with

d �k� �
����������������������������������������������
�xj ÿ xi �2 � � yj ÿ yi �2

q
,

a�k�s1 � cos c�k�h,x�xi, yi � � sin c�k�h,y�xi, yi �,

a�k�s2 � cos c�k�h,x�xj, yj � � sin c�k�h,y�xj, yj �,

a�k�n1 � sin c�k�h,x�xi, yi � ÿ cos c�k�h,y�xi, yi �,

a�k�n2 � sin c�k�h,x�xj, yj � ÿ cos c�k�h,y�xj, yj �, �A6�
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cos c�k� � xj ÿ xi

d �k�

and

sin c�k� � yj ÿ yi
d �k�

: �A7�

The subscripts i, j, and k follow the permutation order

i � 1, 2, 3; j � 2, 3, 1 and k � 3, 1, 2:

In Eq. (33), the incremental strain±displacement matrix di�erential operators Bu and By are expressed
as

Bu �

26666666666666666666664

@

@x
0 0

0
@

@y
0

@

@y

@

@x
0

0 0 0
0 0 0

0 0
@

@x

0 0
@

@y

37777777777777777777775

�A8a�

and

By �

2666666666666666666666666664

0
ÿ@h
@x

0

ÿ@h
@y

0 0

ÿ@h
@x

ÿ@h
@y

0

0
@

@x
0

@

@y
0 0

@

@x

@

@y
0

0 1 0
1 0 0

3777777777777777777777777775

: �A8b�
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